
Deep Learning Library Testing via Effective Model Generation

Zan Wang
1College of Intelligence and

Computing, Tianjin University
2State Key Laboratory of

Communication Content Cognition
China

wangzan@tju.edu.cn

Ming Yan
College of Intelligence and

Computing, Tianjin University
China

yanming@tju.edu.cn

Junjie Chen∗

College of Intelligence and
Computing, Tianjin University

China
junjiechen@tju.edu.cn

Shuang Liu
College of Intelligence and

Computing, Tianjin University
China

shuang.liu@tju.edu.cn

Dongdi Zhang
College of Intelligence and

Computing, Tianjin University
China

zhangdongdi@tju.edu.cn

ABSTRACT

Deep learning (DL) techniques are rapidly developed and have been

widely adopted in practice. However, similar to traditional software,

DL systems also contain bugs, which could cause serious impacts

especially in safety-critical domains. Recently, much research has

focused on testing DL models, while little attention has been paid

for testing DL libraries, which is the basis of building DLmodels and

directly affects the behavior of DL systems. In this work, we propose

a novel approach, LEMON, to testing DL libraries. In particular,

we (1) design a series of mutation rules for DL models, with the

purpose of exploring different invoking sequences of library code

and hard-to-trigger behaviors; and (2) propose a heuristic strategy

to guide the model generation process towards the direction of

amplifying the inconsistent degrees of the inconsistencies between

different DL libraries caused by bugs, so as to mitigate the impact

of potential noise introduced by uncertain factors in DL libraries.

We conducted an empirical study to evaluate the effectiveness of

LEMON with 20 release versions of 4 widely-used DL libraries, i.e.,

TensorFlow, Theano, CNTK, MXNet. The results demonstrate that

LEMON detected 24 new bugs in the latest release versions of these

libraries, where 7 bugs have been confirmed and one bug has been

fixed by developers. Besides, the results confirm that the heuristic

strategy for model generation indeed effectively guides LEMON in

amplifying the inconsistent degrees for bugs.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; · Computing methodologies→ Machine learning.

∗Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409761

KEYWORDS

Deep Learning Testing, Library Testing, Model Generation, Muta-

tion, Search-based Software Testing

ACM Reference Format:

Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020.

Deep Learning Library Testing via Effective Model Generation. In Proceed-

ings of the 28th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), No-

vember 8ś13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3368089.3409761

1 INTRODUCTION

In recent years, deep learning (DL) techniques are rapidly devel-

oped and become one of the most popular techniques. Also, they are

widely adopted in various domains in practice, such as autonomous

driving cars [12], face recognition [59], speech recognition [29],

aircraft collision avoidance systems [36], and software engineer-

ing [15, 16, 18, 21, 42, 70]. Unfortunately, DL systems are also shown

to be vulnerable to attacks and lack of robustness [40, 67]. There are

also reports of real-world accidents caused by DL systems, which

threaten human lives. For example, an Uber autonomous driving car

killed a pedestrian in Tempe, Arizona in 2018 [5], and there are re-

ports on Tesla drivers being killed in autonomous piloting mode [6].

Therefore, it is extremely critical to properly test and verify DL

systems before they are applied to safety-critical scenarios.

Compared with traditional software systems, DL systems usu-

ally involve more complex components, e.g., platform/hardware

infrastructure, deep learning libraries, models, source programs

for training, and training and testing corpus [30]. Each component

may potentially introduce bugs into DL systems. Figure 1 shows the

structure of a typical DL system, which consists of the application

level, library level, and infrastructure level. Currently, most existing

approaches focusing on guaranteeing the quality of DL systems

are at the application level, e.g., testing DL models by generating

adversarial inputs [48, 52, 66] or measuring the testing adequacy of

DL models [45, 46, 55]. However, there is little attention on testing

DL libraries, which may also contain bugs [32, 71] that directly

affect the performance of DL models. Since DL libraries are the

basis of constructing DL systems and the impact of bugs in DL

788

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409761
https://doi.org/10.1145/3368089.3409761

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang

CNTKKe
ra

s

In
te
rfa
ce

CPU

GPU

OS

Library Level

Model

Data
Developer

Source Program

Application Level Infrastructure Level

Train

C++

CUDA

Python

MXNet

Theano

TensorFlow

Figure 1: The structure of a typical DL system

libraries tends to be much larger than that in a specific DL model,

it is very critical to explore the problem of testing DL libraries.

However, testing DL libraries is challenging. The difficulties are

mainly two folds. First, it is difficult to obtain a large number of DL

models to effectively trigger bugs in DL libraries. Different from

traditional software systems, testing of DL libraries requires DL

models, which stack many layers consisting of a large number of

neurons and connection weights, as input. The DL models are con-

structed by the training process based on training data. However,

due to the expensive training cost and limited available training

data, it is quite difficult to construct a large number of models,

let alone the models that can trigger library bugs. Second, it is

challenging to expose the bugs triggered by the DL models. In tra-

ditional software systems, the test-oracle problem has been well

studied and there are some ways of relieving the test-oracle prob-

lem [13, 17, 19, 22, 37, 49]. However, due to many uncertain factors

in DL libraries, such as randomness and floating-point comput-

ing deviation [28], it is challenging to determine whether a found

problem is a real bug in the library, or a problem caused by some

uncertain factors.

To date, few approaches are proposed to target DL library testing.

Pham et al. [56] proposed CRADLE, which is the state-of-the-art ap-

proach to detecting bugs in DL libraries. CRADLE utilizes available

DL models as input to invoke different DL libraries, then differential

testing is adopted to capture the triggered bugs. More specifically,

it defines two metrics (to be presented in Section 2) to measure the

inconsistent degree of prediction outputs and sets a threshold to

distinguish real bugs and uncertain impacts. Exciting results are

reported by CRADLE, but it still suffers from two major limitations:

(1) Relying on existing models to trigger library bugs can be restrict-

ing. The public available models usually focus on popular tasks and

only invoke a limited portion of library code, which tends to be well

tested. Moreover, it is also tedious, and even unrealistic to collect a

large number of available models that can trigger different portions

of library code or explore different usage ways of library code. (2)

Since the inconsistent degrees from real bugs may be similar to, or

even smaller than, those from uncertain impacts, directly setting

a threshold for the measured inconsistent degrees to distinguish

them can be restricting. That is, before applying the threshold to

distinguish them, a smart method is required to amplify the incon-

sistent behaviors caused by real bugs, and thus differentiate with

normal diverse behaviors affected by uncertain factors more clearly.

In this paper, we propose a novel approach, called LEMON (deep

learning Library tEsting via guidedMutatiON). LEMON is designed

to solve the two challenges in DL library testing. To overcome the

first challenge, we design a series of model mutation rules (includ-

ing intact-layer mutation rules and inner-layer mutation rules) to

automatically generate DL models by changing existing models.

The mutation rules are designed with the purpose of exploring

unused library code and different invoking sequences of library

code. In this way, LEMON tries to maximize the ability to explore

the code space of DL libraries for the generated models as much as

possible. To overcome the second challenge, we propose a heuristic

strategy in LEMON to guide the process of model generation to-

wards the direction of amplifying inconsistent degrees for real bugs.

In this way, LEMON increases the differentiation between real bugs

and uncertain impacts. To summarise, the main contribution of

LEMON is generating effective DL models to trigger and expose

bugs in DL libraries.

To evaluate the effectiveness of LEMON, we conducted an ex-

tensive study based on 20 release versions of four widely-used DL

libraries, i.e., TensorFlow [7], Theano [8], CNTK [1], andMXNet [4].

Also, we used 12 popular existing models based on 6 input sets as

initial datasets for testing. In particular, LEMON detected 24 new

bugs in the latest release versions of these libraries in total, where

7 bugs have been confirmed and one bug has been fixed by devel-

opers. The results also demonstrate that the generated models by

LEMON detected many unique bugs that cannot be detected by

the existing models, and significantly amplified the inconsistent

degrees of the detected inconsistencies, i.e., the average amplified

rates over the existing models range from 27.06% to 357.30% across

different library versions. Furthermore, we investigated the contri-

bution of our heuristic strategy for model generation by comparing

with the random strategy, and the results confirm the effectiveness

of our heuristic-based model generation.

To sum up, this work makes the following main contributions:

• A novel approach of DL library testing by generating effec-

tive DL models via guided mutation.

• A practical open-source tool implementing the proposed

approach, including an individual component that conducts

efficient mutations for DL models.

• An extensive study on 20 versions of four widely-used DL

libraries demonstrating that LEMON detects 24 new bugs in

the latest release versions of these libraries and the models

generated by LEMON significantly outperform the existing

models and the models generated without any guidance (i.e.,

the variant of LEMON).

2 BACKGROUND

Deep Learning Model. A DL model is composed of multiple lay-

ers, each of which consists of a large number of neurons. The

neurons between layers are connected with links. Different links

are associated with different weights, which are obtained through

training with input data. Each layer conducts a specific kind of

transformation, such as convolution and pooling, for the input data

with specific weights. In particular, the same layer can be adopted

multiple times in a DL model, and the performance for the same

kind of layer may be diverse as controlled by the weights on the

links. Currently, there are two popular kinds of DL models, i.e., Con-

volutional Neural Network (CNN) and Recurrent Neural Network

(RNN). CNN contains convolution computing and is often used to

process data with grid-like topology, such as images. RNN uses

loops to keep learned information and is mainly used to process

sequential data, such as natural language.

789

Deep Learning Library Testing via Effective Model Generation ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Deep Learning Library. DL platforms generally provide high-

level and low-level libraries. DL system developers implement their

source programs by using high-level library APIs, which invoke

the DL algorithms implemented in low-level libraries. Different

low-level libraries are based on different infrastructures and have

different input formats and APIs, while high-level libraries can hide

the differences between low-level libraries and provide a consistent

view on model construction and training.

Similar to traditional libraries, different DL low-level libraries

provide different implementations according to the same algorith-

m/specification. Developers implement source programs by calling

high-level libraries, which further invoke low-level libraries to

finish different kinds of transformation operations and training pro-

cess. One of the most popular high-level libraries is Keras [2], which

has been widely used in various critical domains [11, 41, 61]. Keras

runs on top of four low-level libraries, i.e., TensorFlow, CNTK,

Theano, and MXNet, which cover most of the popular libraries.

Similar to the existing work [56], we used TensorFlow, Theano,

CNTK, and MXNet as the low-level libraries under test and adopted

Keras as the high-level library invoking them. Therefore, DL library

testing in our work refers to testing low-level libraries.

Metrics for Testing DL Libraries. Differential testing has been

applied to test DL libraries [56]. There are various metrics pro-

posed to measure the differences detected between DL libraries. We

introduce those metrics briefly here. D_CLASS [56] is applied to

classification models, which calculates a score for each prediction

result by checking the rank of the ground-truth class in the pre-

diction result and then calculates the difference between the two

scores. In particular, it considers the rankings beyond Top-K (i.e.,

Top-5 in the study [56]) not interesting, i.e., setting the score to be 0.

D_MAD [56] is applied to both classification and regression models

and considers all elements in each output vector to calculate its dis-

tance with the ground-truth vector. Given the ground-truth vector

denoted as G = (д1,д2, . . . ,дm), the prediction output vectors O j

andOk , D_MAD is calculated based on Formulae 1 and 2. When the

D_CLASS or D_MAD value is larger than a pre-defined threshold,

an inconsistency is detected and the D_CLASS or D_MAD value

marks the inconsistent degree of the inconsistency.

δO ,G =
1

m

m∑

i=1

|oi − дi | (1)

D_MADG ,O j ,Ok
=

|δO j ,G − δOk ,G |

δO j ,G + δOk ,G
(2)

RA =
δA
Li ,Lj

− δpre

δpre + ϵ
(3)

Layer localization metric is also proposed (i.e., by [56]) to localize

the root cause of the inconsistency. The formal definition is defined

in Formula 3. δA
Li ,Lj

represents the output difference (defined by

Formula 1) of a layer A between Li and Lj . δpre is the maximum

output difference of the pre-layers of A. RA represents the change

degree between δA
Li ,Lj

and δpre . In this formula, ϵ is set to 10−7,

which is used to avoid the division by zero problem when A is

the first layer in M . The larger the value of RA is, the larger the

possibility that the layer A is the root cause of the inconsistency.

3 APPROACH

To effectively test DL libraries, there are two main challenges to be

addressed. The first challenge is to obtain a large set of DL models,

which serve as test inputs for DL libraries, to trigger DL library bugs.

Different from traditional test inputs (e.g., numerical values and

strings), a DL model is a structure stacking many layers, each of

which contains a large number of neurons and connection weights,

and thus traditional test generation tools cannot be used to generate

DL models. It is non-trivial to obtain a large number of DL models

due to the expensive training cost as well as the limited available

training data. Moreover, it is difficult to generate models that can

trigger DL library bugs. The second challenge is that it is hard to

expose the bugs triggered by DLmodels. Although there aremany test

oracles to help determine whether a bug is detected in traditional

software testing, it is difficult to distinguish whether it is a real bug

for DL libraries since they involve many uncertain factors.

In this work, we propose a novel approach, called LEMON, to

testing DL libraries via guided mutation. LEMON is designed to

solve the above mentioned two challenges. To overcome the first

challenge, we design a series of mutation rules to effectively and

efficiently generate DL models by mutating existing models (pre-

sented in Section 3.1). To overcome the second challenge, we design

a heuristic strategy to guide the process of DL model generation, so

as to generate models that can amplify the inconsistency between

different DL libraries as much as possible for real bugs (presented

in Section 3.2). Finally, we introduce the test oracle used in LEMON

in Section 3.3. Figure 2 shows the overview of LEMON.

3.1 Model Mutation

The goal of our mutation is to generate models to test DL libraries as

sufficiently as possible by exploring unused library code or different

usage ways of library code. To achieve this goal, we design a series

of mutation rules at the model level. We propose to conduct model-

level mutation rather than source-level mutation (i.e., mutating a

source program used for training a model) due to two reasons: First,

source-level mutation is more costly than model-level mutation

since the former has to re-train a model after modifying the source

program. In particular, the training process tends to take hours,

even longer [24]. Second, model-level mutation can introduce more

fine-grained changes to a model than source-level mutation [46].

A DL model consists of multiple layers, each of which contains

a large number of neurons. Each layer is responsible to one spe-

cific functionality such as convolution and pooling. Therefore, we

systematically design our model mutation rules in two types, i.e.,

intact-layer mutation and inner-layer mutation. We introduce them

in detail in the following.

Intact-Layer Mutation. Intact-layer mutation involves mutations

on the entire layer, and thus tends to introduce relatively large

changes to a model. In total, we design seven intact-layer mutation

rules, including four (i.e., LR, LC, LA, and AFRm) adopted from the

existing work [46] and three newly proposed mutation rules (i.e.,

LS, MLA, and AFRp) according to our mutation goal. In particular,

to explore unused library code, we design mutation rules (i.e., LA

and MLA) to insert new layers to a model. In this way, the model

could invoke new library code. Moreover, mutation rules to modify

(i.e., LS, LC, and AFRp) or remove (i.e., LR, AFRm) existing layers

790

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang

Keras Program

Inconsistencies

TensorFlow

Seed Models

Mutation Rules

Mutated Model

Initial Model

Input

Feedback

Feedback

Select

Select MXNet

Theano

CNTK

Figure 2: Overview of LEMON

are designed in order to explore different usage ways of library

code in the model. Please note that, an explicit constraint for intact-

layer mutation is that the output shape1 of one layer and the input

shape of another layer (to be concatenated) should be identical. The

detailed intact-layer mutation rules are described in the following:

• Layer Removal (LR): removes a layer, whose input shape and

output shape are consistent, from the model.

• Layer Switch (LS): switches two layers, both of which have

the same input shape and output shape.

• Layer Copy (LC): copies a layer, whose input shape and out-

put shape are consistent, and then inserts the copied layer

to concatenate the original layer.

• Layer Addition (LA): selects a layer, whose input shape and

output shape are consistent, from the universal set of layers,

and then inserts it to a compatible position in the model.

• Multi-Layers Addition (MLA): LA requires the input shape

and output shape of the selected layer to be consistent. MLA

gets rid of this constraint, and creates a bundle of layers

by concatenating multiple selected layers, where the input

shape of the first layer is consistent with the output shape of

the last layer in the bundle. Finally, MLA inserts this bundle

of layers to a compatible position in the model.

• Activation Function Removal (AFRm): removes the activation

function of a layer.

• Activation Function Replace (AFRp): replaces the activation

function of a layer with a randomly selected activation func-

tion from the universal set of activation functions.

Inner-Layer Mutation. Inner-layer mutation is operated on the

neurons of a layer, which is more fine-grained than intact-layer

mutation. The computation of a layer relies on its neurons, and thus

changing the properties of neurons (e.g., weights and activation

states) facilitates more sufficiently testing on the library code used

in the layer and is also helpful to explore different usage ways of

library code. In particular, we design five inner-layer mutation rules

in total, which are adapted from the existing work [46]. Since a

layer usually contains a large number of neurons and only changing

one neuron has very slight impacts on the model, we randomly

select 30% of neurons in the layer to apply inner-layer mutation.

• Gaussian Fuzzing (GF): adds noise to the weights of a neuron

following Gaussian distribution N (µ, δ2). If δ is large, the

noise added to the weight is large, which is more likely to

produce an invalid model. Therefore, we set µ to be 0 and δ

1The shape refers to the number of dimensions and the size of each dimension.

to be 10% of the standard deviation of the weights for all the

neurons in the layer.

• Weights Shuffling (WS): shuffles the connection weights of a

neuron with the previous layers.

• Neuron Activation Inverse (NAI): inverts the activation state

of a neuron by changing the sign of the output value of a

neuron before passing it to the activation function.

• Neuron Effect Block (NEB): eliminates the effects of a neuron

on the next layers by setting the connection weights of the

neuron to the next layers to be 0.

• Neuron Switch (NS): switches two neurons in a layer to ex-

change their effects on the next layers.

First-Order andHigh-OrderMutation. To increase the diversity

of the mutated models, LEMON considers both first-order mutation

and high-order mutation. First-order mutation refers to applying

only one mutation rule to the initial model, while high-order mu-

tation refers to iteratively applying a series of mutation rules to

the initial model. In other words, nth-order mutation on the initial

model is actually equivalent to first-order mutation on the model

produced by (n−1)th-order mutation on the initial model. As shown

in Figure 3, the NEB mutation rule is applied to the middle Dense

layer. 30% of neurons in the layer are blocked to cut off the connec-

tions with the next Dense layer (i.e., setting the weights to be 0),

which is highlighted using the red color and dashed lines in Figure 3.

3.2 Heuristic-Based Model Generation

Since the mutation space is infinite, it is infeasible to generate all

mutated models and then select a set of models with the largest

inconsistent degrees from them to help expose bugs. Please note

that in LEMON, we also adopt differential testing as the test oracle

and use D_MAD in Formula 2 to calculate the inconsistent degree

of an inconsistency, which is to be presented in Section 3.3 in detail.

One of the most cost-effective solutions is that, for each generation,

we generate a model that can produce larger inconsistent degrees

of inconsistencies than before mutation as much as possible. That

is, we should generate models towards the direction of amplifying

the inconsistent degrees of inconsistencies. Based on this insight,

we propose our heuristic-based model generation method. More

specifically, in each iteration of our model generation, LEMON first

selects a seed model to mutate (presented in Section 3.2.1) and then

selects a mutation rule to apply (presented in Section 3.2.2).

3.2.1 Seed Model Selection. In our context, the initial seed model

refers to a given existing model. LEMON generates mutated models

from this seed model via first-order or high-order mutation. Since

our model generation is conducted iteratively, the generated models

in the previous iteration can also be used in the following iterations.

In particular, to facilitate the model generation towards the direc-

tion of amplifying inconsistent degrees of inconsistencies, LEMON

also treats the mutated models, which has larger inconsistent de-

grees than before mutation, as seed models. The metric defined by

Formula 2 measures the inconsistent degree of an inconsistency

produced by a model with an input on different low-level libraries.

LetMs andMm be the seed model and the mutated model, respec-

tively. Given a set of input {I1, I2, . . . , In } and a set of DL libraries

{L1, L2, . . . , Lm }, ACC(M)=
∑n
i=1

∑m
j ,k=1

D_MADG ,O ji ,Oki
(k > j)

791

Deep Learning Library Testing via Effective Model Generation ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

...
... ...

......
...

...
......
...

...
... ...

......
...

...
...

...
...

Dense DenseDense

Dense Dense Dense

*mutated by NEB mutation rule

coat

Mutated Model
TensorFlow: coat
Theano: ankle boot

 Inconsistency Value: 0.734

TensorFlow: coat
Theano: coat

Initial Model

Inconsistency Value: 0.128

Figure 3: An inconsistency example detected by LEMON (it

is a sketch map for layers, neurons, and connections)

indicates the accumulated inconsistent degrees of inconsistencies

for all inputs under all DL library pairs for modelM . If ACC(Mm)

is larger than ACC(Ms), we regard the mutated model Mm as

inconsistent-degree amplifying.

Intuitively, if a seed model is rarely selected to mutate before,

we should give it a larger chance in order to increase the diversity

of the generated models. For a seed model si , LEMON records the

number of times that si has been selected to mutate, denoted as

ci , and then calculates a score for si , as shown in Formula 4. The

larger the score of a seed model is, the higher the chance that the

seed model is selected for next mutation is.

scorei =
1

ci + 1
(4)

According to the above intuition, we design a seed model selection

procedure based on RouletteWheel Selection [44]. More specifically,

for a seed model si , LEMON calculates the probability that si is

selected for next iteration among all the seed models based on its

score value. The probability is defined in Formula 5, where r is the

total number of seed models. Then, LEMON selects a seed model

according to their calculated probabilities in each iteration.

pi =
scorei∑r

k=1
scorek

(5)

3.2.2 Mutation Rule Selection. Based on a selected seed model,

LEMON then selects a mutation rule. However, different mutation

rules may have different effectiveness in amplifying inconsistent

degrees for a given seed model. Intuitively, if a mutation rule has

frequently generated models that amplify inconsistent degrees of

inconsistencies, it should be more likely selected for the following

mutations. Therefore, for each mutation rule MU, LEMON calcu-

lates its priority score, denoted as Ratio(MU), i.e., the number of

times a model generated by MU amplifies inconsistent degrees of

inconsistencies over the total number of times MU is selected for

mutations. Then, mutation rules are ranked based on the descend-

ing order of their priority scores. However, it is not optimal to

directly select the Top-1 mutation rule, since the ranking results are

acquired based on historical iterations and cannot totally represent

future results. Therefore, each mutation rule should have certain

possibility to be selected, and in the meanwhile, the mutation rule

ranked higher should be selected with a larger possibility.

Based on the above analysis, the mutation rule selection is actu-

ally affected by the most recent behavior of mutation rules, which

makes it a typical Markov Chain (MC). Assuming the desired

distribution to be equilibrium distribution [25], LEMON adopts

Metropolis-Hastings (MH) algorithm [38], the most popular Markov

Chain Monte Carlo (MCMC) method, to guide our mutation rule

selection. More specifically, MH obtains random samples from a

probability distribution, which refers to sampling the next mutation

rule (denoted as MUb) based on the current mutation rule (denoted

as MUa) according to the proposal distribution in our context.

Following the existing MCMC work [23], we set the geometric

distribution as the probability distribution. It is the probability

distribution of the numberX of Bernoulli trials needed to obtain one

success. If the success probability on each trial is p, the probability

the kth trial being the first success is Ps(X = k) = (1−p)k−1p. Since

mutation rules are selected randomly, the proposal distribution is

symmetric. Therefore, the possibility of selecting MUb given MUa

is calculated by Formula 6. In this formula, ka and kb are the rank

ofMUa andMUb in the ranking list of mutation rules. In particular,

when Ps(MUb) > Ps(MUa), Pa(MUb |MUa) = 1. Please note that,

it is possible to select a mutation rule that cannot be successfully

applied to the selected seed model, LEMON skips simply it.

Pa(MUb |MUa) =
Ps(MUb)

Ps(MUa)
= (1 − p)kb−ka (6)

3.2.3 Overall Algorithm. We formally describe our heuristic-based

model generation in Algorithm 1. The initial set of seed models only

contains the given existing model and the initial priority score of

each mutation rule is 0. In this algorithm, Line 1 randomly selects

a mutation rule as the current one MUa , Lines 2-30 iteratively

generate a set of mutated models, and Line 31 outputs the final

set of generated models. Lines 3-14 conduct the Roulette Wheel

Selection process to select a seed model. Lines 15-20 selects the

next mutation rule MUb based on the current one MUa . Lines

21-22 generate a new model m by applying MUb to s and also

add m into Models. Lines 23-25 judge whether m amplifies the

accumulated inconsistent degrees for all inputs under all DL library

pairs and updates the seed model set. Line 26 updates the score

of s according to Formula 4. Lines 27-29 update the priority score

of MUb according to the ratio defined in Section 3.2.2, and then

re-rank all the mutation rules for the next iteration.

3.3 Test Oracle in LEMON

Following the existing work [56], we also adopt differential testing

as the test oracle to determine whether a bug in a DL library is

detected. More specifically, LEMON adopts D_MAD (presented in

Section 2) to measure the inconsistent degree between two predic-

tion results. LEMON does not useD_CLASS since it aims to measure

the differences on trained real models, i.e., models trained with real

training data such that the ground-truth class tend to have a high

rank in the prediction result. However, LEMON uses mutated mod-

els, which may produce low-ranked prediction results. Therefore,

the D_CLASS value is likely to be 0 and thus not informative.

792

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang

Algorithm 1: Heuristic-Based Model Generation

Input :Rules: A list of mutation rules
Seeds: A list of seed models [Ms]
N: The number of generated models, serving as the terminating

condition
Output :Models: A set of generated models

1 MUa ← random(Rules)

2 while Size(Models) < N do
3 foreach i from 1 to Size(Seeds) do
4 Pro[i]←calProb(Seeds[i])/* calculate the probability for

Seeds[i] by Formula 5 */

5 end

6 r ← random(0,1)

7 bound← 0

8 foreach i from 1 to Size(Seeds) do
9 bound← bound + Pro[i]

10 if r ≤ bound then
11 s ← Seeds[i]/* s is the selected seed model */

12 break

13 end

14 end

15 ka ← position(MUa)

16 do
17 MRb ← random(Rules)

18 kb ← position(MRb)

19 f ← random(0,1)

20 while f ≥ (1 − p)kb−ka ;

21 m← Mutate(s , MUb)

22 Models← Models ∪ {m}

23 if ACC(m)≥ ACC(s) then
/* ACC is defined in Section 3.2.1 to calculate the

accumulated inconsistent degrees */

24 Seeds← Seeds ∪ {m}

25 end

26 updateScore(s)/* update the score of s defined in Formula 4 */

27 updateRatio(MUb)/* update the priority score of MUb defined in

Section 3.2.2 */

28 Rules← sort(Rules)

29 MUa ← MUb

30 end

31 return Models

After acquiring the inconsistent degree between two prediction

results, i.e., the D_MAD value, we determine whether a real incon-

sistency is detected. Following the existing work [56], if theD_MAD

value exceeds a threshold T , we regard it as a real inconsistency;

Otherwise, the difference is considered to be caused by uncertain

factors in deep learning. In particular, since LEMON is designed

to amplify the inconsistent degrees of inconsistencies, it would be

clearer to distinguish real bugs and uncertain impacts. As shown

in Figure 3, the inconsistent degree produced by the initial model

under an input is only 0.128, while that produced by our mutated

model under the same input reaches 0.734. Moreover, we manually

checked the inconsistencies detected by the two models under the

same input, and found that both of them are caused by the same

buggy layer. That indicates that our model generation is indeed

able to amplify the inconsistent degrees of inconsistencies and thus

expose real bugs more effectively.

Besides the above discussed inconsistencies, there are still other

two kinds of bugs. If the prediction results of some libraries are

NaN (Not a Number) but those of other libraries are not, a bug is de-

tected obviously. We call such bugs NaN bugs. If some models crash

during execution but other models do not, a bug is also obviously

detected. We call such bugs Crash bugs. To avoid confusion, we use

Table 1: Statistics information of DL libraries under test

ID
TensorFlow Theano CNTK MXNET

Ver #SLOC Ver #SLOC Ver #SLOC Ver #SLOC

E1 1.14.0 2,261K 1.0.4 156K 2.7.0 331K 1.5.1 423K

E2 1.13.1 1,970K 1.0.3 155K 2.6.0 328K 1.4.1 378K

E3 1.12.0 1,874K 1.0.2 154K 2.5.1 320K 1.3.1 341K

E4 1.11.0 1,829K 1.0.1 154K 2.4.0 313K 1.2.1 300K

E5 1.10.0 1,779K 1.0.0 153K 2.3.1 304K 1.1.0 266K

Total Ð 9,713K Ð 773K Ð 1,596K Ð 1,708K

the inconsistencies to represent the first kind of inconsistencies

(excluding NaN and crash bugs) in this paper.

4 EVALUATION

In the study, we address the following research questions:

• RQ1: How does LEMON perform in detecting bugs in DL

libraries?

• RQ2: Does our heuristic-based model generation contribute

to LEMON?

• RQ3: How does LEMON perform in terms of efficiency?

4.1 Libraries and Datasets

Libraries. As presented in Section 2, in the study, we used four

widely-used DL libraries, i.e., TensorFlow, CNTK, Theano, and

MXNet, as subjects. To sufficiently evaluate the effectiveness of

LEMON, we used 20 release versions of the four libraries in total.

Based on the 20 versions, we constructed five experiments (indexed

E1 to E5 in Table 1) to conduct differential testing. In this table, each

row represents each differential testing experiment, and columns

łVerž and ł#SLOCž present the library version and the correspond-

ing number of source lines of code. In our study, the total SLOC of

all studied libraries is up to about 14 million. In particular, the first

experiment (i.e., ID is E1) is based on the latest release versions of

the four libraries. We used Keras (version 2.2.4) as the front end (i.e.,

the high-level library) to construct models. Due to limited space,

we used TF, TH, CN, and MX to represent TensorFlow, Theano,

CNTK, and MXNet in the following tables and figures.

Models and Datasets. To test these DL libraries, we used 12 pop-

ular DL models based on 6 popular input sets, as the initial seed

models in LEMON, which have been widely used in many existing

studies [43, 56]. In particular, we considered the diversity of the

models and input sets adopted by considering the model structures

(including both CNN and RNNmodels), the scales of models (includ-

ing both large and small models in terms of the number of weights

and layers in a model), and the domains of input sets (including both

images and sequential data). Here, Sine-Wave and Stock-Price are

sequential data, where the former is a set of sine function values and

the latter is a set of Disneyland Stock Price data between 1997 and

2016. Table 2 shows their detailed information. For each model, we

randomly sample 1, 500 inputs from the corresponding validation

set, as the input data in our study. We can observe that the number

of layers ranges from 3 to 159 and the number of weights ranges

from 27K to more than 143 million, which indicates an extremely

large mutation space. Please note that, we directly loaded weights

from Keras for models trained with ImageNet and trained the other

793

Deep Learning Library Testing via Effective Model Generation ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Table 2: Statistics information of datasets

ID Model Input Set #Weight #Layer Domain Net.

1 AlexNet CIFAR-10 1,251K 17 Image CNN

2 LeNet5 Fashion-MNIST 413K 10 Image CNN

3 LeNet5 MNIST 62K 13 Image CNN

4 LSTM-1 Sine-Wave 71K 5 Sequential RNN

5 LSTM-2 Stock-Price 27K 3 Sequential RNN

6 ResNet50 ImageNet 25,637K 50 Image CNN

7 MobileNetV1 ImageNet 4,254K 88 Image CNN

8 InceptionV3 ImageNet 23,852K 159 Image CNN

9 DenseNet121 ImageNet 8,063K 121 Image CNN

10 VGG16 ImageNet 138,358K 23 Image CNN

11 VGG19 ImageNet 143,667K 26 Image CNN

12 Xception ImageNet 22,910K 126 Image CNN

* LSTM-1 and LSTM-2 are two different LSTM-based models trained with sequential data.

models using their provided source programs and corresponding

training sets, respectively.

4.2 Measurements

Number of Inconsistencies.We denote an inconsistency between

two libraries Li and Lj produced by a model M under an input I

as a triple (M, I , Li↔Lj). Since we aim at testing the low-level li-

braries, the input triggering the library executions involves bothM

and I (to M). Therefore, we use a tuple (M, I) to denote a library-

invoking input. Since the mutation rules tend not to change a model

behavior in a large manner, we assume that the inconsistencies

exposed by the library-invoking inputs (M1, I), (M2, I), . . . , (Mn, I),

where M1,M2, . . . ,Mn are mutants from the same initial model,

on the library pair (Li , Lj) are likely to reflect the behavior differ-

ence between Li and Lj in the same way. Therefore, we keep only

one inconsistency among them and use the inconsistency with the

largest inconsistent degree as the representative, which also avoids

the influence of equivalent mutants. In this way, we keep the incon-

sistencies that can reflect library behavior differences in different

ways to a large extent. We count the number of these inconsisten-

cies as a measurement in our study. Similar to spectrum-based fault

localization (SBFL) [64] and automated program repair (APR) [51],

more failure-triggering tests (referring to library-invoking inputs

that trigger inconsistencies in our work) reflecting a fault in differ-

ent ways are more helpful to increase the suspicious score of the

root-cause program element in SBFL and filter plausible patches in

APR. Therefore, the number of inconsistencies is able to measure

the effectiveness of LEMON to some degree. Larger is better.

Number ofDetectedBugs. Althoughwe acquire the number of in-

consistencies, it is more important to acquire the number of unique

bugs detected by LEMON from these inconsistencies. According to

the voting mechanism in differential testing [49], the buggy library

for each inconsistency can be identified. Then, for each inconsis-

tency, we used the localization method presented in Section 2 to

locate which layer is the most suspicious one to cause the incon-

sistency. Since the localization method has been demonstrated to

be very effective in the existing work [56], we use the localized

Top-1 layer as the root cause. Here, we use a tuple (the voted buggy

library, the localized buggy layer) to denote a unique bug. Since the

measurements (including the localization method and the threshold

for identifying an inconsistency) may not be completely precise,

we further manually check each bug by building a one-layer model

that keeps the same parameters of the identified layer to check the

result under the same layer input for different libraries. Actually,

the rate of false positives for LEMON is very small, i.e., less than

10%. In our experiment, we count the number of bugs after manual

analysis to measure the effectiveness of LEMON.

4.3 Compared Approaches

The state-of-the-art approach to testing DL libraries is CRADLE,

which is proposed by Pham et al. [56]. The main contribution of

CRADLE is the test oracle, i.e., CRADLE adopts differential testing

to detect inconsistencies based on existing models. LEMON, on the

other hand, focuses on model generation, i.e., LEMON proposes

to generate effective models via guided mutation to trigger and

expose inconsistencies to a large extent. The contributions of the

two approaches are actually orthogonal. Since the number of gen-

erated models can be very large and collecting the same number of

existing models is scarcely possible, it is hard to directly compare

LEMONwith CRADLE. Alternatively, for each given existing model

(i.e., initial model), we analyzed how many inconsistencies/bugs

detected by LEMON are only detected by the initial model and how

many inconsistencies/bugs detected by LEMON are only detected

by the models mutated from the initial model.

Besides, our heuristic-based model generation is the core of

LEMON, and thus it is also interesting to investigate the effective-

ness of this component. We compared LEMON with its variant that

replaces the heuristic-based model generation with the random

model generation. More specifically, the random model generation

is to generate models via mutation without any guidance, i.e., ran-

domly selecting a seed model and a mutation rule in each iteration.

We call this invariant LEMONr .

4.4 Implementations and Data Availability

We set the thresholdT to be 0.4, indicating that an inconsistency is

regarded as detected when the value of D_MAD exceeds 0.4. This

setting is relatively large so as to avoid introducing too many false

positives, which is also confirmed by our manual analysis. For the

terminating condition of LEMON, when the number of mutated

models reaches 100 for a given initial model, we terminate LEMON.

Following the setting of p in the MH algorithm [14, 23], we set p to

be 0.08. Our study is conducted on the Intel Xeon E5-2640 machine

with 128GB RAM, Ubuntu 16.04.6 LTS, and two GTX 1080 Ti GPUs.

Our tool and experimental data are publicly available at our

project website [3].

5 RESULTS AND ANALYSIS

5.1 Effectiveness of LEMON

5.1.1 New Bugs Detected by LEMON. We first investigated the ef-

fectiveness of LEMON in terms of new bugs detected in the latest

release versions of libraries, i.e., versions used in E1, whose results

are shown in Table 3. In total, LEMON detects 24 new bugs in the

latest release versions of these libraries, including 13 bugs by ana-

lyzing the detected inconsistencies, 6 crash bugs, 4 NaN bugs, and

1 performance bug. More specifically, there are 5 TensorFlow bugs,

4 Theano bugs, 2 CNTK bugs, 12 MXNet bugs, and surprisingly 1

Keras bug (the used front-end in our study), indicating that LEMON

is able to detect bugs for all the studied libraries. In particular, 7

794

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang

Table 3: The number of new bugs detected by LEMON

Library #IC Bugs #Crash #NaN #Total

TensorFlow 4 0 1 5

Theano 3 0 1 4

CNTK 2 0 0 2

MXNet 4 6 2 12

Keras 1 performance bug 24

* IC is short for inconsistency and IC Bugs refer to the bugs ana-
lyzed from inconsistencies. The last cell refers to the total num-
ber of new bugs detected by LEMON on all the five libraries.

+ mxnet: :TShape& out_shp = (*out_attrs)[0];

- mxnet: :TShape ret(shp.ndim(), -1);
- CHECK_LE(shp.ndim(), 6) << "Transpose support at most 6 dimensions";

……

+ CHECK_EQ(std::max(shp.ndim(), out_shp.ndim()), param.axes.ndim());
- CHECK_EQ(shp.ndim(), param.axes.ndim());

Figure 4: The fix of the buggy transpose operator in MXNet

bugs have been confirmed in the corresponding issue repositories

and one bug has been fixed by developers. The average number of

generated mutants is 24.57 for each detected bug. More specifically,

there are five bugs that are detected by generating less than 3 mu-

tants while there are also three bugs that are detected by generating

more than 70 mutants. The average time spent on generating and

running these mutants for each detected bug is 2.62 hours. We then

conducted case analysis according to bug types:

Crash Bugs.We regarded the crash bugs with different crash mes-

sages as different crash bugs. One crash bug has been fixed by

developers, which occurs in MXNet. This bug cannot be detected

by any initial models but is detected by the mutated models from

six initial models (i.e., AlexNet, DenseNet121, LeNet5F , LeNet5M ,

MobilenetV1, and Xception), showing a large-scale influence. More

specifically, the crash bug is due to the wrong shape inference of

the transpose operator in MXNet, whose fix is shown in Figure 4.

The buggy transpose operator only relies on the input tensor for

shape inference, causing to throw the exception message: łCheck

failed: shp.ndim()==param.axes.ndim() (-1 vs 4)ž, even if the model

is valid. The fixed transpose operator uses both the input tensor

and output tensor and thus is able to infer all unknown dimension

sizes based on these tensors.

Bugs from Inconsistencies. The 13 bugs from inconsistencies

involve different types of layers, including LSTM, Conv2D, Batch-

Normalization, Dense, DepthwiseConv2D, MaxPooling2D, Aver-

agePooling2D, in different libraries. By taking a Theano bug as an

example, for a mutated model from LeNet5F this bug leads to the

accuracy of the mutated model using Theano to be 44.66% while

the accuracy of the mutated model using the other three libraries is

larger than 92.35%, indicating the significant influence of this bug,

confirmed by developers. We find that the R value of the Conv2D

layer is 76399.15 between Theano and TensorFlow while the max-

imum R value of all the other layers is only 5.47, indicating that

Conv2D is the localized root cause.

By taking a TensorFlow bug as another example, among 1500

input images for Xception, Theano and CNTK have the same predic-

tion results but TensorFlow has different results for 118 images. The

root cause of this bug is identified as the BatchNormalization layer,

i.e., wrong values of the variables moving_mean and moving_var.

Another user also replies to our bug report to complain that they

suffered from this bug for transfer learning.

NaN Bugs. As shown in Table 3, LEMON detects 4 NaN bugs in

three libraries. By taking a Theano NaN bug as an example, for

a mutated model from MobileNetV1, the output using Theano is

NaN while that using CNTK is normal, confirmed by developers.

In particular, for the initial model MobileNetV1 the outputs of both

Theano and CNTK are normal. That demonstrates that our mu-

tation rules are effective to make the calculation process trigger

NaN bugs. Further, we analyzed the output of each layer of this

mutated model using Theano, and find that at the 17th layer (a

BatchNormalization layer), its output starts to be NaN. Moreover,

the outputs of the first 16 layers for the model using Theano and

CNTK are the same. That indicates that the root cause of this NaN

bug lies in the BatchNormalization layer of Theano.

We also find an interesting NaN bug in MXNet. For a mutated

model from MobileNetV1, the output using MXNet is NaN while

that using CNTK is normal, and in the meanwhile both of them

have normal outputs for the initial modelMobileNetV1. We then an-

alyzed the output of each layer of the mutated model using MXNet,

but surprisingly no NaN happens. Actually, directly obtaining the

prediction result (used in LEMON) and obtaining the prediction

result by getting the output of each layer are two equivalent ways

but uses different Keras interfaces. The former calls the interface

predict while the latter calls the output attribute of each layer.

Moreover, the former outputs NaN while the output of the latter

is normal. We infer that the root cause of this NaN bug is in the

interface (i.e., predict) between Keras and MXNet, and we have

submitted a bug report for it and are waiting for responses.

Performance Bug. LEMON also detected an interesting perfor-

mance bug in Keras. When conducting model mutations in LEMON,

LEMON has to repeatedly call the Keras functions clone_model

and set_weights, but the time spent on each single call becomes

longer. clone_model and set_weights take about 4 seconds and

3 seconds in the first iteration, and the time grows to about 34 sec-

onds and 4 minutes, respectively, in the 50th iteration. By a detailed

observation, we find that the bug is caused by memory leak, and

this performance bug is detected during the mutation process of

LEMON (thus only using initial models cannot detect this bug),

which has also been confirmed.

5.1.2 MutatedModels v.s. Initial Models. Onemajor contribution of

LEMON is generating mutated models, and thus it is interesting to

investigate the unique value of the mutated models. We present the

detailed results in Table 4. Here, we investigated the effectiveness

of LEMON and the unique value of the mutated models for each

experiment of differential testing, each usedmodel, and each studied

library, respectively. For example, the first number of the third row

in Table 4 represents the number of TensorFlow bugs detected by

LEMON using the model AlexNet in experiment setting E1. From

Column łTotalž in Table 4, we find that LEMON is able to detect

bugs in each library at each differential-testing experiment, and on

average the number of detected library bugs by LEMON is 22 for the

five experiments, which demonstrates the effectiveness of LEMON.

795

Deep Learning Library Testing via Effective Model Generation ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Table 4: Detailed comparison results in terms of the number of detected bugs

ID Lib
AlexNet DenseNet Inception LeNet5F LeNet5M LSTM-1 LSTM-2 MobileNet ResNet5 VGG16 VGG19 Xception Total

L M I L M I L M I L M I L M I L M I L M I L M I L M I L M I L M I L M I L M I

E1

TF 1 0 0 0 0 0 0 0 0 1 0 0 2 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 5 2 0

TH 1 0 0 0 0 0 0 0 0 1 0 0 2 2 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 4 2 0

CN 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

MX 3 2 0 4 3 0 2 1 0 4 3 0 3 3 0 2 1 0 1 0 0 4 3 0 4 2 0 1 1 0 2 2 0 3 3 0 12 7 0

E2

TF 3 2 1 1 0 0 0 0 0 1 0 0 2 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 6 2 0

TH 1 0 0 0 0 0 0 0 0 2 1 0 2 2 0 0 0 0 0 0 0 1 1 0 2 2 0 0 0 0 1 1 0 0 0 0 6 4 0

CN 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0

MX 1 0 0 2 1 0 1 0 0 2 1 0 2 2 0 1 0 0 1 0 0 2 1 0 4 2 0 1 1 0 1 1 0 2 2 0 10 5 0

E3

TF 3 2 0 2 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 4 0 0

TH 1 0 0 1 1 0 0 0 0 2 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 5 3 0

CN 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0

MX 1 0 0 2 1 0 1 0 0 2 1 0 1 1 0 1 0 0 1 0 0 1 0 0 3 1 0 1 1 0 1 1 0 1 1 0 8 3 0

E4

TF 3 2 0 1 0 0 1 1 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 4 1 0

TH 2 1 0 0 0 0 1 1 0 1 0 0 2 2 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 4 2 0

CN 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0

MX 2 1 0 3 2 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 2 1 0 3 1 0 1 1 0 0 0 0 1 1 0 8 4 0

E5

TF 2 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 4 1 0

TH 2 1 0 0 0 0 0 0 0 1 0 0 2 2 0 0 0 0 0 0 0 3 3 0 1 1 0 1 1 0 0 0 0 1 1 0 6 4 0

CN 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 3 2 0

MX 1 0 0 3 2 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 2 1 0 2 0 0 1 1 0 0 0 0 3 3 0 9 5 0

* Column łLž presents the number of detected bugs by LEMON, Column łMž presents the number of unique bugs that are detected by the mutated models but are not detected by the initial model, and

Column łIž presents the number of unique bugs that are detected by the initial model but are not detected by the mutated models. LeNet5F refers to the LeNet5 model based on the Fashion-MNIST input

set, LeNet5M refers to the LeNet5 model based on the MNIST input set, DenseNet refers to DenseNet121, MobileNet refers to MobileNetV1, and Inception refers to InceptionV3.

Table 5: Average inconsistent degree comparison for the detected inconsistencies

Lib Pair
E1 E2 E3 E4 E5

VM VI ⇑rate VM VI ⇑rate VM VI ⇑rate VM VI ⇑rate VM VI ⇑rate

TF↔TH 0.83 0.31 166.45% 0.60 0.13 348.90% 0.64 0.14 357.30% 0.60 0.19 207.76% 0.59 0.15 282.14%

TF↔CN 0.70 0.34 104.71% 0.62 0.20 213.44% 0.59 0.23 160.12% 0.61 0.25 141.33% 0.60 0.24 152.47%

TH↔CN 0.84 0.39 118.30% 0.69 0.26 162.04% 0.74 0.29 152.77% 0.76 0.31 142.99% 0.74 0.33 123.45%

TF↔MX 0.85 0.55 54.08% 0.82 0.50 62.72% 0.76 0.52 47.84% 0.75 0.49 55.57% 0.80 0.49 64.12%

TH↔MX 0.92 0.71 29.16% 0.79 0.44 81.10% 0.90 0.65 37.15% 0.94 0.74 27.06% 0.81 0.57 42.11%

CN↔MX 0.83 0.45 85.06% 0.81 0.38 112.94% 0.77 0.44 72.51% 0.82 0.54 51.84% 0.80 0.46 72.94%

* Columns łVM ž and łVI ž present the average inconsistent degrees achieved by the mutated models and the initial models across all the used models,
respectively. Column ł⇑ratež presents the average improved rates of inconsistent degrees achieved by the mutated models over the initial models.

Please note that the bugs detected at different differential-testing

experiments could be duplicate since some detected bugs have been

hidden for a long time.

Besides, among all the 60 cases (12 models * 5 differential-testing

experiments), the mutated models are able to detect at least one

unique bug in 76.67% (46 out of 60) cases (shown in Columns łMž),

while the initial models detect only one unique bug in only one

case (shown in Columns łIž) , which is also detected by the mutated

models in other cases. Therefore, the results demonstrate the unique

value of the mutated models, and the bugs detected by the initial

models are a subset of the bugs detected by the mutated models.

Overall, from the detailed results we conclude that regardless of

which initial models are used as seed models of LEMON, LEMON

does detect a number of bugs including a large proportion of unique

bugs, largely augmenting the testing capability of the existing mod-

els, which are the models used in CRADLE.

5.1.3 Comparison of Inconsistent Degrees. To investigate the rea-

son for the superiority of the mutated models, we further evaluated

whether the mutated models can amplify the inconsistent degrees

compared with the initial models, which is an objective of our

heuristic strategy. We compared the inconsistent degrees for the

detected inconsistencies for this purpose. If an inconsistency is

detected by either an initial model or the corresponding mutated

models using the same input and library pair, we compared the

inconsistent degrees of the inconsistency between them. Table 5

shows the average results across all the used models for each li-

brary pair and each differential-testing experiment. From this table,

for all the library pairs and all the differential-testing experiments,

LEMON indeed significantly amplifies the inconsistent degrees of

the inconsistencies, successfully achieving its objective. In partic-

ular, the average improved rates of inconsistent degrees achieved

by the mutated models over initial models range from 27.06% to

357.30% for different library pairs and differential-testing experi-

ments. The results demonstrate that LEMON is able to effectively

amplify the inconsistent degrees by generating mutated models

from initial models, which contributes to expose the inconsisten-

cies/bugs more effectively.

5.2 LEMON v.s. LEMONr

The heuristic-based model generation method is one of the main

contributions of LEMON, and thus we further investigated the effec-

tiveness of the heuristic-based model generation method compared

796

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang

Table 6: Comparison between LEMON and LEMONr

Lib Pair
Only mutated # Only initial ⇑rate

LEMON LEMONr LEMON LEMONr LEMON LEMONr

TF↔TH 136 108 0 0 49.21% 28.83%

TF↔CN 181 133 0 0 69.79% 35.45%

TH↔CN 114 123 0 0 81.29% 57.16%

TF↔MX 371 269 5 55 27.88% 14.79%

TH↔MX 317 231 5 55 35.89% 27.02%

CN↔MX 382 319 5 55 54.17% 41.34%

* Columns 2-3 present the total number of inconsistency only detected by the mutated

models generated by LEMON or LEMONr (not detected by initial models) across all the

models. Columns 4-5 present the total number of inconsistency only detected by the initial

models (not detected by mutated models). Column 6-7 present the average improved

rates of inconsistent degrees achieved by the mutated models over initial models.

with the random generation method LEMONr . We adopted the

library versions used in E2 as the representative. More specifically,

for each initial model we ran LEMON and LEMONr in the same

time period (i.e., one hour) to test the four libraries for fair compar-

ison. We repeated the process five times and calculated the average

results to reduce the impact of randomness. Due to the cost of iden-

tifying the root-cause layer, we compared LEMON and LEMONr in

terms of the number of detected inconsistencies. In particular, the

larger number of detected inconsistencies tends to mean the larger

number of detected bugs, which have been demonstrated based on

the results in Section 5.1.

Table 6 presents the comparison results between LEMON and

LEMONr . From this table, we find that comparedwith LEMONr , the

models generated by LEMON detect more unique inconsistencies

which are missed by the initial models, on almost all the library

pairs. The total number of inconsistencies that are only detected

by the initial models and missed by LEMON is much smaller than

that missed by LEMONr . Moreover, the average improved rate of

inconsistent degrees achieved by LEMON is always larger than

that of LEMONr for each library pair. The results demonstrate

that both LEMON and LEMONr are able to detect many unique

inconsistencies that cannot be detected by the given initial models.

LEMON detects more than LEMONr . LEMONr also misses many

inconsistencies detected by the initial models. We also find that

LEMON achieves larger improved rates of inconsistent degrees

over initial models than LEMONr . The reason is that LEMONr

does not guide the generation of models towards the direction

of amplifying inconsistent degrees, and thus it is more likely to

diminish inconsistent degrees than LEMON. The evaluation results

confirm the contribution of the heuristic-based model generation

method in LEMON.

5.3 Efficiency of LEMON

We also analyzed the efficiency of LEMON. Due to the design of our

mutation rules (carefully considering the input shape and output

shape), LEMON does not generate invalid models. On average,

LEMON spent 4.97 minutes at each iteration for each given initial

model. More specifically, the average time spent on generating a

mutated model by LEMON is only 0.3 minutes and the average time

spent on running all the inputs for a model is 4.67 minutes. The

results demonstrate the efficiency of LEMON, which facilitates it

to be applied in practice.

6 DISCUSSION

6.1 Extensions of LEMON

LEMON can be potentially extended on three aspects.

First, the current LEMON cannot test the library code used for

model training since it uses existing pre-trained models as seed

models and conducts mutations at the model level without retrain-

ing. In the future, LEMON can be extended to consider mutation

rules at the source level, which involve the model retraining process,

and conducts differential testing in the same way.

Second, LEMON adopts differential testing to solve the test-

oracle problem in DL library testing, but it could miss bugs if dif-

ferent libraries produce the same wrong results. To get rid of this

limitation, it is promising to introduce metamorphic testing for

LEMON to help solve the test-oracle problem, since metamorphic

testing does not require different libraries and detects bugs based

on the properties of one library.

Third, DL library testing relies on both models and the input

data of the models. If an effective model does not have proper input

data, the testing capability of the model cannot be fully manifested.

Currently, LEMON aims to generate effective models to detect

library bugs, and does not consider the impact of the input data.

In the future, we will further explore what kind of input data is

helpful to show the testing capability of a specific model generated

by LEMON as sufficiently as possible.

6.2 Threats to Validity

The internal threat to validity mainly lies in the implementations

of LEMON and our scripts in the study. To reduce this threat, two

authors have carefully checked the code before submission.

The external threats to validity mainly lie in the used libraries

and models in our study. We adopted four widely-used libraries,

i.e., TensorFlow, Theano, CNTK, and MXNet, as subjects, but they

may not represent other libraries such as PyTorch. We chose the

four libraries, since they are supported by the same front-end Keras

while PyTorch is not, and the current implementation of the mu-

tation rules in LEMON only supports the models using the Keras

front-end. However, LEMON is a general approach, and it can be

used to test PyTorch by just re-implementing the mutation rules

in LEMON to support the models using PyTorch, which is also our

future work. To reduce this threat, we used 20 different release

versions of the four libraries in total. We also try to use a diverse

range of model families (12 popular models based on 6 input sets),

which have different model structures, in order to trigger more

library behaviors.

The construct threats to validity mainly lie in randomness, set-

tings, and measurements in our experiment. To reduce the impact

of randomness in our study, we constructed five differential-testing

experiments instead of repeating each experiment several times.

When comparing LEMON and LEMONr , we set the same time limit

(i.e., one hour for each initial model) using only one experiment,

and thus we repeated each approach five times and calculated the

average results to reduce the impact of randomness. The threats

from the settings (e.g., the threshold T) and measurements, have

been discussed in Sections 4.4 and 4.2. To further reduce them, we

reported bugs to the corresponding bug repositories, and some have

been confirmed/fixed and some are still waiting for responses.

797

Deep Learning Library Testing via Effective Model Generation ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

7 RELATED WORK

Deep Learning Testing. The most related work to ours is CRA-

DLE proposed by Pham et al. [56], which has been discussed be-

fore. Besides, Zhang et al. [71] and Islam et al. [32] conducted

empirical studies to investigate the characteristics of DL source

program bugs. Different from them, our work proposes a novel

approach to testing DL libraries via effective model generation.

Besides, there are some work focusing on testing machine learning

(ML) libraries [26, 27, 57, 58]. For example, Dwarakanath et al. [27]

adopted metamorphic testing to test ML libraries by conducting

transformations on training and testing data. Different from them,

our work focuses on testing DL libraries and proposes to generate

effective DL models.

Furthermore, there are a great deal of researches focusing on

testing DL models in the literature [10, 20, 31, 45ś47, 55, 62, 65, 66,

69]. Many of them proposed criteria to measure test adequacy [39,

45, 46, 55]. For example, Ma et al. [45] proposed a set of multi-

granularity testing criteria, including neuron-level and layer-level

coverage criteria, for DL models. Besides, many of them proposed

to find/generate adversarial inputs [52, 60, 66]. For example, Xie et

al. [66] proposed DeepHunter, a fuzz testing framework to test DL

models, which conducts semantic-preserving transformation for

input of the models under test and uses coverage criteria to guide

the fuzzing process to find issues in models. Different from them,

our work focuses on testing DL libraries rather than DL models.

Mutation Testing. Our work is also related to mutation testing,

which is one of the most effective methods to measure test-suite

quality. Mutation testing has been extensively studied in traditional

software systems [9, 33ś35, 50, 53, 54, 68]. Recently, in the area of

DL testing, Ma et al. [46] proposed amutation testing framework for

DL models. Wang et al. [63] proposed to detect adversarial inputs

for DL models by mutating models, based on the observation that

adversarial inputs are more sensitive than normal inputs in mutated

models. Different from them, our work aims to test DL libraries by

generating effective models via mutating existing models. That is,

the mutated models serve as input of DL libraries rather than the

subjects under test.

8 CONCLUSION

In this paper, we propose a novel approach, LEMON, to testing DL

libraries by generating effective DL models via guided mutation.

More specifically, we design a series of model mutation rules in

LEMON to generate DL models by changing existing models. The

design goal is to test DL libraries as sufficiently as possible by

exploring unused library code or different usage ways of library

code. We further propose a heuristic strategy in LEMON to guide

the process of model generation so as to generate models that

can amplify the inconsistent degrees for real bugs. In this way, it is

clearer to distinguish real bugs and uncertain impacts in DL libraries.

We conducted an empirical study to evaluate the effectiveness of

LEMON based on 20 release versions of TensorFlow, Theano, CNTK,

and MXNet. LEMON detected 24 new bugs in the latest release

versions of these libraries. The results also demonstrate that the

models generated by LEMON outperform existing models and the

models generated without guidance in terms of the number of

unique bugs/inconsistencies and the achieved inconsistent degrees.

ACKNOWLEDGEMENT

This work has been supported by the National Natural Science Foun-

dation of China 62002256, 61872263, U1836214, 61802275 and Intel-

ligent Manufacturing Special Fund of Tianjin 20191012, 20193155.

REFERENCES
[1] Accessed: 2020. CNTK. https://docs.microsoft.com/cognitive-toolkit/.
[2] Accessed: 2020. Keras. http://keras.io.
[3] Accessed: 2020. LEMON. https://github.com/Jacob-yen/LEMON.
[4] Accessed: 2020. MXNet. http://mxnet.incubator.apache.org.
[5] Accessed: 2020. News. https://www.vice.com/en_us/article/9kga85/uber-is-

giving-up-on-self-driving-cars-in-california-after-deadly-crash.
[6] Accessed: 2020. News. https://en.wikipedia.org/wiki/List_of_self-driving_car_

fatalities#cite_note-15.
[7] Accessed: 2020. TensorFlow. https://www.tensorflow.org.
[8] Accessed: 2020. Theano. http://deeplearning.net/software/theano/.
[9] Dennis Appelt, Cu Duy Nguyen, Lionel C Briand, and Nadia Alshahwan. 2014.

Automated testing for SQL injection vulnerabilities: an input mutation approach.
In 2014 International Symposium on Software Testing and Analysis. 259ś269.

[10] Houssem Ben Braiek and Foutse Khomh. 2019. DeepEvolution: A Search-Based
Testing Approach for Deep Neural Networks. In 2019 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME). IEEE, 454ś458.

[11] Ken Chang, Niranjan Balachandar, Carson Lam, Darvin Yi, James Brown, Andrew
Beers, Bruce Rosen, Daniel L Rubin, and Jayashree Kalpathy-Cramer. 2018. Dis-
tributed deep learning networks among institutions for medical imaging. Journal
of the American Medical Informatics Association 25, 8 (2018), 945ś954.

[12] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. 2015. Deepdriving:
Learning affordance for direct perception in autonomous driving. In Proceedings
of the IEEE International Conference on Computer Vision. 2722ś2730.

[13] Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, Bing Xie, and
Hong Mei. 2016. Supporting oracle construction via static analysis. In Proceedings
of the 31st International Conference on Automated Software Engineering. 178ś189.

[14] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Compiler bug isolation via effective witness test program generation. In
Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 223ś234.

[15] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng
Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. An Empirical
Investigation of Incident Triage for Online Service Systems. In Proceedings of the
41st ACM/IEEE International Conference on Software Engineering. 111ś120.

[16] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao,
Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. Continuous incident
triage for large-scale online service systems. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 364ś375.

[17] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An empirical comparison of compiler testing techniques. In
Proceedings of the 38th International Conference on Software Engineering. 180ś190.

[18] Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced Compiler Bug
Isolation via Memoized Search. In The 35th IEEE/ACM International Conference
on Automated Software Engineering. to appear.

[19] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. Comput. Surveys 53 (02
2020), 1ś36.

[20] Junjie Chen, Zhuo Wu, Zan Wang, Hanmo You, Lingming Zhang, and Ming Yan.
2020. Practical Accuracy Estimation for Efficient Deep Neural Network Testing.
ACM Transactions on Software Engineering and Methodology (2020). to appear.

[21] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Yu
Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2020. How
Incidental are the Incidents? Characterizing and Prioritizing Incidents for Large-
Scale Online Service Systems. In The 35th IEEE/ACM International Conference on
Automated Software Engineering. to appear.

[22] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H.
Tse, and Zhi Quan Zhou. 2018. Metamorphic Testing: A Review of Challenges
and Opportunities. Comput. Surveys 51, 1 (2018), 4:1ś4:27.

[23] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed Differential Testing of JVM Implementations. In PLDI. 85ś99.

[24] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.
Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,
and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In Proceedings
of the 25th International Conference on Neural Information Processing Systems -
Volume 1. 1223ś1231.

[25] Yadolah Dodge. 2006. The Oxford dictionary of statistical terms. Oxford University
Press.

[26] Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. 2018. Testing
probabilistic programming systems. In Proceedings of the 2018 ACM Joint Meeting

798

https://docs.microsoft.com/cognitive-toolkit/
http://keras.io
https://github.com/Jacob-yen/LEMON
http://mxnet.incubator.apache.org
https://www.vice.com/en_us/article/9kga85/uber-is-giving-up-on-self-driving-cars-in-california-after-deadly-crash
https://www.vice.com/en_us/article/9kga85/uber-is-giving-up-on-self-driving-cars-in-california-after-deadly-crash
https://en.wikipedia.org/wiki/List_of_self-driving_car_fatalities#cite_note-15
https://en.wikipedia.org/wiki/List_of_self-driving_car_fatalities#cite_note-15
https://www.tensorflow.org
http://deeplearning.net/software/theano/

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang

on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 574ś586.

[27] Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M Rao, RP
Bose, Neville Dubash, and Sanjay Podder. 2018. Identifying implementation
bugs in machine learning based image classifiers using metamorphic testing.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 118ś128.

[28] David Goldberg. 1991. What every computer scientist should know about floating-
point arithmetic. Comput. Surveys 23, 1 (1991), 5ś48.

[29] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal processing. 6645ś6649.

[30] Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu,
Jianjun Zhao, and Xiaohong Li. 2019. An Empirical Study towards Characterizing
Deep Learning Development and Deployment across Different Frameworks
and Platforms. In Proceedings of the 34th International Conference on Automated
Software Engineering. to appear.

[31] Fitash Ul Haq, Donghwan Shin, Shiva Nejati, and Lionel Briand. 2019. Comparing
Offline and Online Testing of Deep Neural Networks: An Autonomous Car Case
Study. arXiv preprint arXiv:1912.00805 (2019).

[32] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
Comprehensive Study on Deep Learning Bug Characteristics. arXiv preprint
arXiv:1906.01388 (2019).

[33] Reyhaneh Jabbarvand and Sam Malek. 2017. µDroid: an energy-aware mutation
testing framework for Android. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 208ś219.

[34] Yue Jia and Mark Harman. 2009. Higher order mutation testing. Information and
Software Technology 51, 10 (2009), 1379ś1393.

[35] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649ś678.

[36] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and Mykel J
Kochenderfer. 2016. Policy compression for aircraft collision avoidance systems.
In 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). 1ś10.

[37] Timotej Kapus and Cristian Cadar. 2017. Automatic testing of symbolic execution
engines via program generation and differential testing. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. 590ś600.

[38] Robert E. Kass, Bradley P. Carlin, Andrew Gelman, and Radford M. Neal. 1998.
Markov Chain Monte Carlo in Practice: A Roundtable Discussion. American
Statistician 52, 2 (1998), 93ś100.

[39] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System Test-
ing Using Surprise Adequacy. In Proceedings of the 41st International Conference
on Software Engineering. 1039ś1049.

[40] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial examples
in the physical world. arXiv preprint arXiv:1607.02533 (2016).

[41] Sunyoung Kwon and Sungroh Yoon. 2017. Deepcci: End-to-end deep learning
for chemical-chemical interaction prediction. In Proceedings of the 8th ACM
International Conference on Bioinformatics, Computational Biology, and Health
Informatics. 203ś212.

[42] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th International Symposium on Software Testing and Analysis. 169ś180.

[43] Zenan Li, Xiaoxing Ma, Chang Xu, Chun Cao, Jingwei Xu, and Jian Lü. 2019.
Boosting Operational DNN Testing Efficiency Through Conditioning. In Pro-
ceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 499ś509.

[44] Adam Lipowski and Dorota Lipowska. 2012. Roulette-wheel selection via sto-
chastic acceptance. Physica A: Statistical Mechanics and its Applications 391, 6
(2012), 2193ś2196.

[45] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 120ś131.

[46] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie,
Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. 2018. DeepMutation: Mutation
Testing of Deep Learning Systems. In 29th IEEE International Symposium on
Software Reliability Engineering. 100ś111.

[47] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: automated neural network model debugging via state differential
analysis and input selection. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 175ś186.

[48] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang.
2019. NIC: Detecting Adversarial Samples with Neural Network Invariant Check-
ing. In 26th Annual Network and Distributed System Security Symposium.

[49] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100ś107.

[50] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. 2014. Guided
mutation testing for javascript web applications. IEEE Transactions on Software
Engineering 41, 5 (2014), 429ś444.

[51] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. Comput.
Surveys 51, 1 (2018), 17:1ś17:24.

[52] Augustus Odena and Ian Goodfellow. 2018. Tensorfuzz: Debugging neural net-
works with coverage-guided fuzzing. arXiv preprint arXiv:1807.10875 (2018).

[53] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Threats to the validity of mutation-based test assessment. In Proceedings of
the 25th International Symposium on Software Testing and Analysis. 354ś365.

[54] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in Computers. Vol. 112. 275ś378.

[55] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles. 1ś18.

[56] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
Cross-backend Validation to Detect and Localize Bugs in Deep Learning Libraries.
In Proceedings of the 41st International Conference on Software Engineering. 1027ś
1038.

[57] Arnab Sharma and HeikeWehrheim. 2019. Testing Machine Learning Algorithms
for Balanced Data Usage. In 12th IEEE Conference on Software Testing, Validation
and Verification. 125ś135.

[58] Siwakorn Srisakaokul, Zhengkai Wu, Angello Astorga, Oreoluwa Alebiosu, and
Tao Xie. 2018. Multiple-Implementation Testing of Supervised Learning Soft-
ware. In The Workshops of the The Thirty-Second AAAI Conference on Artificial
Intelligence. 384ś391.

[59] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. 2014. Deep learning
face representation by joint identification-verification. In Advances in neural
information processing systems. 1988ś1996.

[60] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. 2018. Concolic testing for deep neural networks. In Proceedings
of the 33rd International Conference on Automated Software Engineering. 109ś119.

[61] Kim-Han Thung, Pew-Thian Yap, and Dinggang Shen. 2017. Multi-stage diagnosis
of Alzheimer’s disease with incomplete multimodal data via multi-task deep
learning. In Deep learning in medical image analysis and multimodal learning for
clinical decision support. 160ś168.

[62] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. 303ś314.

[63] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019.
Adversarial sample detection for deep neural network through model mutation
testing. In Proceedings of the 41st International Conference on Software Engineering.
1245ś1256.

[64] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707ś740.

[65] Weibin Wu, Hui Xu, Sanqiang Zhong, Michael R Lyu, and Irwin King. 2019. Deep
validation: Toward detecting real-world corner cases for deep neural networks.
In 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 125ś137.

[66] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: a coverage-guided
fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 146ś157.

[67] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2019. Machine Learning
Testing: Survey, Landscapes and Horizons. arXiv preprint arXiv:1906.10742 (2019).

[68] Lingming Zhang, Tao Xie, Lu Zhang, Nikolai Tillmann, Jonathan De Halleux, and
Hong Mei. 2010. Test generation via dynamic symbolic execution for mutation
testing. In 2010 IEEE International Conference on Software Maintenance. 1ś10.

[69] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. Deeproad: Gan-based metamorphic testing and input validation
framework for autonomous driving systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 132ś142.

[70] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 807ś817.

[71] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An empirical study on TensorFlow program bugs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 129ś140.

799

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Model Mutation
	3.2 Heuristic-Based Model Generation
	3.3 Test Oracle in LEMON

	4 Evaluation
	4.1 Libraries and Datasets
	4.2 Measurements
	4.3 Compared Approaches
	4.4 Implementations and Data Availability

	5 Results and Analysis
	5.1 Effectiveness of LEMON
	5.2 LEMON v.s. LEMONr
	5.3 Efficiency of LEMON

	6 Discussion
	6.1 Extensions of LEMON
	6.2 Threats to Validity

	7 Related Work
	8 Conclusion
	References

