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Abstract—MLIR (Multi-Level Intermediate Representation)
compiler infrastructure has gained popularity in recent years
to support the construction of many compilers. Instead of
designing a new IR with a single abstraction for each domain,
MLIR compiler infrastructure provides systematic passes to
support a wide range of functionalities for benefiting multiple
domains together and introduces dialects to support different
levels of abstraction in MLIR. Due to its fundamental role in
compiler community, ensuring its quality is very critical. In
this work, we propose MLIRSmith, the first fuzzing technique
for MLIR compiler infrastructure. MLIRSmith employs a two-
phase strategy to generate valid and diverse MLIR programs,
which first constructs diverse program templates guided by
extended MLIR syntax rules and then generates valid MLIR
programs through template instantiation guided by our designed
context-sensitive grammar. After applying MLIRSmith to the
latest revision of MLIR compiler infrastructure, we detected
53 previously unknown bugs, among which 49/38 have been
confirmed/fixed by developers. We also transform the high-level
programs generated by NNSmith (a high-level program generator
for deep learning compilers) to MLIR programs for indirectly
fuzzing MLIR compiler infrastructure. During the same testing
time, MLIRSmith largely outperforms such an indirect technique
by detecting 328.57% more bugs and covering 194.67%/225.87%
more lines/branches in MLIR compiler infrastructure.

Index Terms—Test Program Generation, Compiler Fuzzing,
MLIR Compiler Infrastructure

I. INTRODUCTION

Compilers are one of the most fundamental software sys-
tems, which receive high-level source programs and out-
put semantically equivalent low-level programs. Intermediate
Representation (IR) is the key of compilers to facilitate the
translation process [1]. Due to the existence of various domain-
specific problems (e.g., language-specific optimizations), many
compilers implemented their own IR (e.g., Relay IR for the
deep learning compiler TVM [2]). However, designing and
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implementing individual IR with a single abstraction for each
domain or each distinct requirement in a domain is quite costly
and can be error-prone. In fact, different IRs often involve
a lot of common problems, which can lead to substantial
duplicate effort being wasted. Moreover, different tasks may
be suitable for different abstraction levels of IRs, and the
transformation among various IRs is also difficult. Under such
circumstances, MLIR (Multi-Level IR) compiler infrastructure
is proposed [3].

MLIR compiler infrastructure provides a wide range of
common infrastructure to benefit multiple domains simultane-
ously and also introduces dialects to support multi-level IRs
and facilitate their transformations [3]. Indeed, it has received
extensive attention from both academia and industry rapidly. It
not only promoted a great deal of research work [4], [5], [6],
[7], [8], but also powered many compilers targeting different
domains, such as the FORTRAN compiler Flang [9] and the
deep learning compiler IREE [10]. Due to the fundamental
role of MLIR compiler infrastructure, it is critical to ensure
its correctness. Specifically, various domain-specific compilers
are built on top of MLIR compiler infrastructure, and thus its
bugs could cause its powered compilers to produce unexpected
behaviors. That is, the bugs in MLIR compiler infrastructure
have a wider impact than the bugs in an individual compiler,
and the perniciousness of the latter has been clearly demon-
strated by a lot of existing studies [11], [12]. Therefore, the
significance of testing MLIR compiler infrastructure is self-
evident in practice.

MLIR has its distinct characteristics, e.g., it uses dialects
to manage multi-level IRs in the infrastructure and has its
own data structure and semantics (such as regions that group
a sequence of operations in a nested hierarchy) [3]. These
characteristics make existing compiler test program generators
not applicable to the MLIR compiler infrastructure since they
are designed to either generate high-level source programs that



serve as test inputs of a certain compiler (rather than the gen-
eral compiler infrastructure) [12], [13], [14], [15] or generate
domain-specific IRs [16], [17], [18] that do not share data
structure and semantics with MLIR. In fact, high-level source
programs for the compilers powered by the MLIR compiler
infrastructure can be adopted to fuzz it by transforming them
into MLIR programs via corresponding frontends. That is,
some high-level program generators can be adopted to fuzz
the MLIR compiler infrastructure, such as NNSmith that gen-
erates computation graphs for deep learning compilers [14].
However, these generators are constructed based on the charac-
teristics of the target high-level programming languages rather
than MLIR, and thus such a fuzzing method is indirect, which
can limit MLIR-program diversity and negatively affect its
fuzzing effectiveness. This conclusion has been confirmed in
our study (to be presented in Section IV-C). Therefore, fuzzing
MLIR compiler infrastructure is still an open challenge.

In this work, we proposed the first fuzzing technique to
MLIR compiler infrastructure, called MLIRSmith. Instead
of transforming high-level source programs targeting some
specific compilers into MLIR programs for indirect fuzzing,
MLIRSmith directly generates MLIR programs to fuzz MLIR
compiler infrastructure. To ensure the fuzzing effectiveness,
MLIRSmith considers both validity and diversity of generated
MLIR programs by carefully exploiting the characteristics of
MLIR compiler infrastructure. The validity of generated MLIR
programs refers to conforming to the syntactic and semantic
rules of MLIR, while the diversity refers to making generated
MLIR programs cover as many combinations of operations in
various dialects as possible.

To accomplish the goal, MLIRSmith generates MLIR pro-
grams in two phases. First, MLIRSmith performs MLIR pro-
gram template construction. It tentatively masks the semantic
details (i.e., attributes and operands) in each operation and
focuses on covering different combinations of operations in
various dialects in order to ensure program diversity. This
phase is guided by a set of extended MLIR grammars in
order to ensure syntactic validity. Second, MLIRSmith per-
forms MLIR program instantiation, which aims to generate
valid MLIR programs by instantiating a program template.
Instantiating attributes and operands in an operation should
conform to complex semantic rules (e.g., constraints between
the operation and operands, different operands, or operands
and attributes). To facilitate the instantiation process, we define
a context-sensitive grammar to model these complex semantic
rules, which allows MLIRSmith to properly instantiate an
operand or an attribute according to its context, i.e., the
settings of its dependent materials (operation, operands, or
attributes) for ensuring semantic validity.

Such a two-phase generation strategy makes MLIR pro-
gram generation more extensible, which opens the door for
human-provided templates to incorporate expert knowledge in
the process of fuzzing. For each generated MLIR program,
MLIRSmith randomly selects passes in MLIR compiler in-
frastructure to transform or optimize it, and takes crash as the
test oracle.

To evaluate MLIRSmith in fuzzing MLIR compiler infras-
tructure, we applied MLIRSmith to fuzz its latest reversion
(fdbc55a). During two-month fuzzing, MLIRSmith detected
53 previously unknown bugs in total, where 49 of them have
been confirmed and 38 have been fixed by developers. The
bugs detected by MLIRSmith are diverse, which involve a
wide range of root causes and passes in MLIR compiler infras-
tructure. We also compared MLIRSmith with NNSmith (the
state-of-the-art high-level source program generator for deep
learning compilers). We transformed the high-level source
programs generated by NNSmith into MLIR programs with
two frontends. Hence, we constructed two baselines: NNSmith
(IREE) and NNSmith (ONNX-MLIR). During 24-hour fuzzing
(by repeating five times), MLIRSmith detected 23 bugs while
the two baselines detected only 6 and 7 bugs, respectively.
Moreover, MLIRSmith covered 1.95× and 2.36× more lines,
2.26× and 2.78× more branches, 4.00× and 6.00× more di-
alects, 3.57× and 3.05× more operations than both baselines,
respectively. The results demonstrate the significant superiority
of MLIRSmith over indirect fuzzing through the high-level
source program generator.

To sum up, our work makes the following contributions:
• We are the first to formulate and motivate the problem of

fuzzing MLIR compiler infrastructure.
• We propose the first fuzzing technique for MLIR com-

piler infrastructure, MLIRSmith, by automatically gener-
ating valid and diverse MLIR programs.

• We conducted an extensive study to demonstrate the
effectiveness of MLIRSmith. In particular, MLIRSmith
detects 53 previously unknown bugs in the latest reversion
of MLIR compiler infrastructure, where 49/38 have been
confirmed/fixed by developers.

II. MLIR COMPILER INFRASTRUCTURE

Instead of designing and implementing a new IR with a sin-
gle abstraction for each domain, MLIR compiler infrastructure
provides a general infrastructure to support the development
of various domain-specific compilers. Specifically, it provides
systematic passes to support a wide range of functionalities
for benefiting multiple domains simultaneously and introduces
dialects to support multi-level IR.

Dialects are used to represent different levels of abstraction
in MLIR. Each dialect defines a set of operations specific to a
certain domain, such as linear algebra and machine learning.
Specifically, dialects allow MLIR to support the representation
of operations at different levels of abstraction (from low-level
hardware-specific operations to high-level domain-specific ab-
stractions), which actually forms an MLIR program. An MLIR
program example is shown in Fig. 1b. It is helpful to optimize
various operations at the proper level in order to achieve more
efficient code generation and maximize the optimization ability
for different hardware targets. By introducing or modifying
dialects, an abstraction level can be conveniently added or
refined to support new domains or hardware targets, while still
maintaining consistent representation across different levels of
abstraction. Hence, MLIR is more maintainable and flexible.



An operation represents a fundamental unit of computa-
tion in MLIR, which consists of its name, operands, and
results (e.g., memref.alloc, %rb, and %alloc for the
operation at Line 2 in Fig. 1b). The operands are the inputs
required by the operation, each of which may have complex
type constraints, and the results are its produced outputs.
An operation could optionally have attributes and regions,
where attributes are key-value pairs that provide additional
information to specify the behavior of an operation (e.g.,
the alignment attribute for the memref.alloc operation at
Line 2 is to specify the alignment of the allocated memory for
the operation) and regions are used to represent nested blocks
of operations (e.g., the scf.parrallel operation is nested
in the function region and it also has an attached region from
Line 3 to Line 6 that describes the parallel loop in Fig. 1b).

MLIR programs have complex semantic rules, which are a
set of constraints that control program structure and behaviors.
Note that in this work, we consider static semantics, while
dynamic semantics (e.g. Undefined Behaviors) are not guar-
anteed. Specifically, static semantics control the use of operand
types, attributes, and regions, as well as their interactions. We
explain each type of rules in detail as follows:

• Semantic rules on attributes: This type of rules ensure
that (1) the attributes are consistent with the semantics
of the operation and (2) they do not conflict with other
attributes. For instance, the alignment attribute of the
memref.alloc operation (at Line 2 in Fig. 1b) must
be a non-negative integer.

• Semantic rules on operand types: The operands of an
operation must be of compatible types. That is, the types
of operands must be (1) consistent with the semantics
of the operation and (2) compatible with each other.
For instance, the memref.store operation (at Line 4
in Fig. 1b) requires the type of the second operand to
be memref type and the element type (i.e., f32) of
memref must be the same as the type of the first operand.

• Semantic rules on operand visibility: The operations
can only use SSA (i.e., Single Static Assignment [19])
values that are in scope. A visible value is the one that
is defined within the same region or a parent region of
the operation. One exceptional case is the func.func
operation, which prevents the operations inside the region
from using SSA values defined outside. For instance, the
SSA value %alloc is visible to the memref.store
operation (at Line 4 in Fig. 1b) .

• Semantic rules on regions: Some operations can only
appear in some specific regions, and in turn, the regions
of some operations can only contain some specific opera-
tions. For instance, the terminator (that marks the end of a
region) of a function must be the return operation and
the return operation can only serve as the terminator.

Passes implement various transformations or optimizations
on MLIR programs, especially operations under various di-
alects. MLIR compiler infrastructure organizes most of its
functionalities into passes. Some passes are designed to per-

form common transformations or optimizations to multiple di-
alects, such as common subexpression elimination, while some
passes are designed for a specific dialect, such as the “affine-
loop-unroll” pass that unrolls loops in the affine dialect in
order to improve performance. It is also convenient to define
new customized passes to meet some specific demands in the
MLIR compiler infrastructure.

III. MLIRSMITH

A. Design of MLIRSmith

In this work, we propose the first fuzzing technique, called
MLIRSmith, for the MLIR compiler infrastructure. The core of
MLIRSmith is to generate valid and diverse MLIR programs
in order to achieve effective and efficient fuzzing. Regarding
the validity of MLIR programs, MLIRSmith requires to ensure
both syntactic validity and semantic validity, which is helpful
to evaluate deep functionalities in MLIR compiler infrastruc-
ture. This is because a syntactically invalid MLIR program
can be directly rejected by the parser, while a semantically
invalid MLIR program can be detected at the very early stage
of MLIR passes. Generating diverse MLIR programs is helpful
to improve the fuzzing effectiveness by covering more MLIR
compiler infrastructure code and exploring input space more
sufficiently. The core of MLIR programs lies in operations
and dialects, and thus different combinations of operations in
various dialects can help enhance the diversity of generated
MLIR programs.

To accomplish the above goal, MLIRSmith employs a two-
phase program generation process, i.e., constructing MLIR
program templates and generating MLIR programs by in-
stantiating program templates. The former pays attention to
improving the diversity of generated MLIR programs by
incorporating diverse operations and dialects, and tentatively
ignores semantic details (i.e., operands and attributes) in each
operation. In particular, the construction of program templates
is guided by the extended MLIR syntax in order to ensure the
syntactic validity of generated MLIR programs. The latter aims
to instantiate program templates to generate valid MLIR pro-
grams. The instantiation process carefully considers complex
semantic rules through designing a context-sensitive grammar
to ensure the semantic validity of generated MLIR programs.
The two-phase strategy makes MLIR program generation more
extensible. It is helpful to incorporate expert knowledge by
utilizing human-provided MLIR program templates to generate
MLIR programs for fuzzing.

In the following, we first introduce the phase of MLIR
program template construction in Section III-A, then present
the phase of MLIR program instantiation in Section III-C, and
finally illustrate the overall fuzzing process with MLIRSmith
in Section III-D.

B. MLIR Program Template Construction

We design syntax rules for MLIR program templates, which
extend a subset of MLIR grammars and are shown in Fig. 2.
Note that the ? in the second production rule represents a
dynamic dimension. An MLIR program template consists of



1. func.func @parallel_store(%cst: f32,  %lb: index, %rb: index, 
%step: index) {

2. %alloc = memref.alloc(%rb) {alignment = 8} :  memref<?xf32>
3. scf.parallel (%iv) = (%lb) to (%rb) step (%step) {
4. memref.store %cst, %alloc[%iv] : memref<?xf32>
5. scf.yield
6. }
7. return
8. }

1. func.func @parallel_store(%cst: f32,  %lb: index, %rb: index, 
%step: index) {

2. %alloc = memref.alloc [[V1]] {alignment = [[C1]]} : memref<?xf32>
3. scf.parallel (%iv) = [[V2]] to [[V3]] step [[V4]] {
4. memref.store [[V5]], [[V6]] [[[V7]]] 
5. scf.yield
6. }
7. return
8. }

(a) Program template with placeholders

  1.  func.func @parallel_store(%cst: f32,  %lb: index, %rb: index, 
%step: index) {

  2.      %alloc = memref.alloc(%rb) {alignment = 8} :  memref<?xf32>
  3.      scf.parallel (%iv) = (%lb) to (%rb) step (%step) {
  4.          memref.store %cst, %alloc[%iv] : memref<?xf32>
  5.          scf.yield
  6.      }
  7.      return
  8.  }

  1.  func.func @parallel_store(%cst: f32,  %lb: index, %rb: index, 
%step: index) {

  2.      %alloc = memref.alloc [[V1]] {alignment = [[C1]]} : memref<?xf32>
  3.      scf.parallel (%iv) = [[V2]] to [[V3]] step [[V4]] {
  4.          memref.store [[V5]], [[V6]] [[[V*7]]] 
  5.          scf.yield
  6.      }
  7.      return
  8.  }

(b) Program generated by instantiating the template

Fig. 1: Motivating example

Id ::= dialect.op

Dim ::= N+ | ?
Shape ::= ϵ | Dim | Dim×Shape

Type ::= i1 | i32 | i64 | f32 | f64 | index
| tensor<Shape×Type>

| memref<Shape×Type>

| vector<Shape×Type>

Operand ::= [[V ]]

Attr ::= key : [[C]]

Operation ::= Id ({Attr∗})? Operand∗ Region∗

Region ::= {Type∗Operation∗}
Program ::=

(func.func Attr∗ Type∗→Type∗ Region?)∗

Fig. 2: The syntax rules for MLIR program templates.

multiple functions, where a function consists of the opera-
tion identifier (i.e., func.func), the function signature (the
function name specified by attribute and a list of argument
types), the return types, and the function body that is a region
consisting of a list of operations. The operation is the basic
unit for our program template generation and contains an Id,
an optional list of attributes, operands (i.e., values represented
in %SSA symbols), and an optional region. We introduce
the placeholders [[V ]] and [[C]] to mask the semantic details
of an operation and focus on diversifying the combinations
of dialects and operations in a template in this phase. [[V ]]
represents available values for an operand, and [[C]] represents
available literals or constants for an attribute. Therefore, the
program templates can express a set of MLIR programs by
instantiating the placeholders.

To generate a program template, we need to first decide
the number of functions within the program using a hyper-
parameter. For each function, the function signature (which
consists of a list of attributes and types) and the return value
(which consists of a list of types), are randomly generated. The
function body, which is a region, is generated by Algorithm 1.
The algorithm takes scope that defines operations available

to the region, and the configuration that allows users to set
the maximum depth of nested regions and the maximum
number of operations within a region, as input, and output
the generated region template.

Algorithm 1 starts by generating an empty region template
tmpl at Line 2. Then, the operations available for sampling
in the generation process is obtained through getAvailableOp
(at Line 3). This step filters out the operations that do not
satisfy the depth limit constraint by the configuration from
scope. The loop (from Line 4 to 11) fills tmpl with a list of
operation templates. Each iteration first adaptively samples an
operation Id opId from availOpIds (at Line 5). An operation
has a greater probability if it is less sampled in history.
The operation template with opId is created (at Line 6) by
masking the operand and the attribute of the operation. Then,
the operation template is appended to the operation list of
the region template tmpl.ops (at Line 7). If the generated
operation has a region, the region is recursively generated (at
Line 9) according to conf (to avoid exceeding the region depth
limit). Then, the abstract terminator operation is created and
appends to tmpl.ops (Line 12 and 13).

We use Fig. 1a to illustrate how MLIRSmith generates the
example template with Algorithm 1. MLIRSmith starts with
generating functions using the func.func operation. MLIR-
Smith generates the function name @parallel_store and
a list of types f32, index, index, index as its sig-
nature, an empty list as its result types, and its function
body region. Specifically, the region is generated through
Algorithm 1. It generates the operation template sequence
[memref.alloc, scf.parallel] as well as the termina-
tor return for the function body region, where the operands
and attributes of each operation are masked with placeholders,
for instance, the alignment attribute and the only operand of
memref.alloc is masked as [[C1]] and [[V1]]). Algorithm 1
is recursively applied to generate a region for operation
scf.parallel (at Line 3 in Fig. 1a).

C. MLIR Program Instantiation

Given a generated program template, MLIRSmith designs a
context-aware program instantiation strategy, which enforces
semantic rules in the generated MLIR programs. We first
define a context-sensitive grammar inspired by the existing



Algorithm 1: Generating Region Template
Input: scope: defining operations available to the region

conf : configuration for generation
Output: tmpl: generated template

1 Function RegionTmplGeneration(scope, conf):
2 tmpl := initialize an empty region;
3 availOpIds :=

getAvailableOp(scope, conf.depthLimit);
4 while len(tmpl.ops) ≤ conf.lenLimit do
5 opId := adaptive sampling from availOpIds;
6 op := operation template with opId;
7 tmpl.ops.append(op);
8 if op has a region then
9 child := RegionTmplGeneration(opId, conf);

10 end
11 end
12 t := generate abstract terminator;
13 tmpl.ops.append(t);
14 return tmpl;

work [20], based on which we define context-sensitive pro-
duction rules to express the semantics.

Definition 1 (Context-sensitive grammar (CSG)): A context-
sensitive grammar is a 4-tuple G = (N ∪ H,

∑
, R, s), where

• N is a finite set of non-terminal symbols and H is the
set of placeholder symbols,

•
∑

is a finite set of terminal symbols,
• R is a finite set of context-sensitive production rules with

the form of [c]α → β1β2 . . . βn, where α ∈ N∪H, n ≥ 1,
βi ∈ (N ∪

∑
) for i = {1, . . . , n}, and c is the context in

the form of <Sv , ID, A, T >, in which Sv is the visible
value set, ID is the operation id, A is the attribute set
and T is the list of operand types.

• s ∈ N is an unique start symbol.
We design a set of context-sensitive production rules, which

take into account the semantic rules for the operands and
attributes of an operation, based on the context-sensitive
grammar.

Rule Class 1: [<Φ, ID, Φ, []>] [[Ckey]] → c
Rule class 1 contains rules that instantiate the attribute place-
holder [[Ckey]] of the corresponding key based on the opera-
tion ID, where the mapping from the operation ID to the set of
attribute key is adopted from official documents [21]. There
are a total of 202 such mapping pairs and thus 202 concrete
rules in this class. The first example in Table I provides a
concrete rule of this class, the memref.alloc operation
requires the value of the key alignment to be a non-negative
integer.

Rule Class 2: [<Sv , ID, A, [T1, . . . , Ti−1]>] [[Vi]] → Value
Rule class 2 instantiates the value of the ith operand place-
holder based on the visible value set (Sv), operation ID, the
attributes (A), and the types of its preceding i − 1 operands,
i.e., T1, . . . , Ti−1. For instance, the second example in Table I
shows a production rule that instantiates the placeholder [[V6]]
with the value %alloc, since the memref.store operation
stores the first operand (i.e., value to be stored) into the second

Algorithm 2: Instantiating templates
Input: op: operation with placeholder
Output: op: operation instance

1 Function TemplateInstantiation():
2 vals := set of visible values at the current program point;
3 types := list of known types;
4 foreach key in op.attrs do
5 op.attrs[key] := generateAttr(op.id, key);
6 end
7 foreach operand in op.operands do
8 type := generateType(op.id, op.attrs, types);
9 types.append(type);

10 candidates := generateOperand(vals, type);
11 if candidates is an empty set then
12 newV al := init value with type;
13 candidates.add(newV al);
14 vals.add(newV al);
15 end
16 operand := sample from candidates;
17 end
18 return op

operand (i.e., the memory to be operated), the type of the
second operand must be memref and its element type should
be consistent with the type of the first operand. Then, the [[V6]]
is replaced with the value of the type memref<?×f32> in
Sv (i.e., %alloc) to satisfy the requirement.

Algorithm 2 illustrates the instantiation process from a pro-
gram template based on the context-sensitive production rules.
The algorithm takes as input an operation with placeholders
op and the visible value set vals.

First, it applies Rule Class 1 to generate literals or constants
that satisfy the constraints for each key of the operation
attribute (Lines 4-6). Then, it proceeds to fill the operands
of the operation with visible values while adhering to the type
constraints specified in Rule Class 2. The algorithm maintains
the former i−1 determined operand types (with variable types
at Line 3) and iterates over the operands in operation (Lines 7-
17). For each operand, it first infers a proper type and updates
the types list accordingly (Lines 8-9). It then searches the
visible value set to obtain value candidates that match the
operand type (Line 10). If no proper operands can be found,
the algorithm generates an initial value of the operand type
and adds it to the visible value set (Lines 11-15). Finally, the
algorithm selects an operand from the candidate set and inserts
it into the operand list of the operation (Line 16). Note that the
functions generateAttr and generateType randomly
select an attribute and a type from allowable ones, respectively.

Based on the above algorithm, MLIRSmith instantiates the
program template shown in Fig. 1a to produce an MLIR
program as shown in Fig. 1b. The placeholders in the program
template are instantiated by assigning concrete values to
operands and concrete literals to attributes. For example, at
Line 2, the placeholder [[C1]] is instantiated by the integer 8,
and [[V1]] is instantiated by the index value %rb.



TABLE I: Examples of context-sensitive production rules

ID Production Rule Example

1 [<Φ, memref.alloc, Φ, Φ>] [[Calignment]] → N

2 [<{%cst: f32, %alloc: memref<?×f32>, . . . }, memref.store, {}, [f32]>] [[V6]] → %alloc

? in memref<?×f32> indicates that the first dimension of the memory is dynamic

Algorithm 3: Fuzzing with MLIRSmith
Input: opts: initial options
Output: cps: crashed tests and the corresponding option

1 Function MLIRCompilerFuzzing(opts):
2 while time not exceed do
3 test := new program generated by invoking

RegionTmplGeneration and
TemplateInstantiation;

4 sOpts := empty set of pass options;
5 foreach opt in opts do
6 stat := state of executing test with option opt;
7 if stat indicates a crash then
8 cps.add(test, opt);
9 end

10 else
11 sOpts.add(opt);
12 end
13 end
14 while not exceed the trials limit do
15 optSeq := random select a sequence from

sOpts;
16 stat := state of executing test with option

optSeq;
17 if stat indicates a crash then
18 cps.add(test, optSeq);
19 end
20 end
21 end
22 return cps

D. Overall Fuzzing Process with MLIRSmith

We applied MLIRSmith to fuzz the MLIR compiler infras-
tructure by randomly generating MLIR programs. To make
an MLIR program execute the MLIR compiler infrastructure,
we randomly enable a sequence of passes to transform and
optimize the MLIR program. If a crash occurs, we regard the
MLIR program triggers an MLIR compiler infrastructure bug.

The fuzzing process is shown in Algorithm 3, which takes
the whole set of passes opts as input. The fuzzing process
is iterative and terminates until the pre-defined time budget
is exhausted. At each iteration, MLIRSmith applies each
individual pass and a pre-defined number of pass sequences
to transform/optimize each MLIR program (denoted as test at
Line 3). MLIRSmith first applies each opt in opts to test, and
observes the execution status stat of test (Lines 5-13). If the
stat indicates a crash, a bug is detected (at Line 7); otherwise,
the opt is added to sOpts. Since the passes that can trigger
crashes individually are not included in sOpts, we can reduce
the possibility of triggering duplicate crashes by constructing
pass sequences from sOpts. Specifically, we then use test

for fuzzing under a pre-defined number of pass sequences
(Lines 14-20). Each pass sequence is constructed by random
sampling passes from sOpts at Line 15. After applying the
pass sequence to test (Line 16), we observe whether a crash
occurs (Lines 17-18).

IV. EVALUATION

To evaluate MLIRSmith, we aim to address the following
research questions (RQs):

• RQ1: Can MLIRSmith detect previously unknown bugs
in MLIR compiler infrastructure?

• RQ2: Can MLIRSmith outperform indirect fuzzing tech-
niques (transforming high-level source programs to MLIR
programs for fuzzing) in terms of test effectiveness?

A. Experimental Setup

We evaluated MLIRSmith on the recent revision (fdbc55a)
of MLIR compiler infrastructure in order to detect previously
unknown bugs. It has more than 392K lines of code.

Baselines: Since MLIRSmith is the first fuzzing technique
specific to MLIR compiler infrastructure, we did not have
direct baselines. In fact, some high-level source programs can
be transformed into MLIR programs and thus can also be
adapted to fuzz MLIR compiler infrastructure. As explained
aforementioned, such methods are indirect and do not consider
the characteristics of MLIR compiler infrastructure, which can
limit the test effectiveness. To sufficiently evaluate MLIR-
Smith, we still migrated such an indirect technique to fuzz
MLIR compiler infrastructure for comparison by adopting
NNSmith [14] as the representative. Specifically, NNSmith
is the state-of-the-art test generator for fuzzing deep learning
compilers, which can automatically generate ONNX compu-
tation graphs. To use its generated tests for fuzzing MLIR
compiler infrastructure, we transformed ONNX computation
graphs generated by NNSmith into MLIR programs through
corresponding frontends. In particular, there are two available
frontends supporting such transformations, i.e., IREE [10]
and ONNX-MLIR [4]. In our study, we use both of them
for sufficient comparison and call the baselines NNSmith
(IREE) and NNSmith (ONNX-MLIR), respectively. Here,
we adopted the default configurations of NNSmith provided
by the existing work [14] for evaluation.

Metrics: In the study, we used three metrics to measure
the effectiveness: the number of detected bugs, the number of
covered lines and branches in MLIR compiler infrastructure,
and the number of covered dialects and operations. The
first one is the main metric in our study as well as many



existing studies on fuzzing [14], [17], [12], [22], [23], [24].
During the fuzzing process, each technique produced a set of
crashes triggered by MLIR programs. We de-duplicated them
according to crash messages and submitted unique crashes
to MLIR compiler infrastructure developers. Based on their
feedback, we counted the number of detected bugs. The second
one is also important in the area of fuzzing and has been
widely used in the existing work [12], [25], [13]. The third one
is to measure the diversity of generated MLIR programs. We
considered the number of covered dialects (and operations),
the number of covered dialect pairs (and operation pairs) with
control dependency, and the number of covered dialect pairs
(and operation pairs) with data dependency. The latter two
reflect the combination of dialects (and operations) to some
degree.

Configurations: The conf in Algorithm 1 is described as
follows: the maximum region depth is 3 and the maximum
number of operations in a region is 128. Each template
contains exactly 1 function. For Algorithm 3, the input opts
is collected from the official pass document [26].

To sufficiently evaluate MLIRSmith, we ran it for 2 months
to detect as many previously unknown bugs as possible in
order to help enhance the quality of MLIR compiler infrastruc-
ture. To compare with baselines, we ran each technique for 24
hours. To reduce the influence of randomness, we repeated the
comparison experiments 5 times with different random seeds
and reported the aggregated results for each technique.

Implementation: We implemented MLIRSmith on top of
the MLIR compiler infrastructure. It has 9,923 lines of C++
code. The current version of MLIRSmith supports 12 widely-
used dialects (i.e., builtin, func, arith, tensor,
memref, linalg, vector, index, math, scf, affine,
bufferization) and all the operations in these dialects.
Due to the implementation effort, we leave the remaining
dialects as future work. The remaining dialects tend to be more
low-level, such as hardware-specific dialects[27]. Intuitively,
the test capability of MLIRSmith can be further improved by
incorporating the remaining dialects.

Data Availability: We released our tool MLIRSmith and
experimental data at our project homepage for experiment
replication and practical use [28]. We hope that the artifact
can be helpful to promote future research in this field.

Environment: Our study was conducted on a machine with
Intel(R) Xeon(R) Gold 6240C CPU @ 2.60GHz and 128G
Memory, Ubuntu 18.04.6 LTS.

B. RQ1: Previously Unknown Bugs Detected by MLIRSmith

During two-month fuzzing, MLIRSmith detected 53 previ-
ously unknown bugs in total. The details of these bugs are pre-
sented in Table II, where each column represents the bug ID,
the root cause of the fixed bug, the type of the bug-occurring
pass, and the bug status labeled by developers. Among the 53
bugs, 49 have been confirmed and 38 have already been fixed
by MLIR compiler infrastructure developers. The remaining
four are awaiting feedback from the developers.

The bugs detected by MLIRSmith are diverse. They in-
volved a wide range of (1) passes in MLIR compiler infras-
tructure and (2) root causes. Then, we analyzed these bugs
from the two aspects.

Pass Analysis: According to the document of MLIR com-
piler infrastructure, the passes are categorized as bufferiza-
tion passes, conversion passes, general transformation passes,
dialect-specific passes, and others.

• Bufferization passes are responsible to convert opera-
tions with tensor semantics to operations with memref
semantics by replacing the tensor operands with memref
values. Among the 53 reported bugs, only 2 occur in the
bufferization passes.

• Conversion passes perform transformations between di-
alects to lower the abstraction level. For example, the pass
“convert-scf-to-cf” transforms structured control flow
(which can be organized in nested structure) to flat-
tened control flow (that only has branches or conditional
branches). There are a total of 19 bugs that have been
identified to occur in the conversion passes.

• General transformation passes can be applied to all
dialects and are responsible to perform common opti-
mizations/transformations, such as common subexpres-
sion elimination. Specifically, 9 bugs occur in general
transformation passes, including 5 bugs in canonicaliza-
tion, 1 bug in common subexpression elimination, and 3
bugs in inline.

• Dialect-specific passes are responsible to perform op-
timizations/transformations within each specific dialect.
For example, the pass “affine-loop-unroll” is specific
to optimizing the operations within the “affine” dialect.
There are 19 bugs occur in dialect-specific passes, includ-
ing 5 in passes for the “affine” dialect, 2 in passes for
the “arith” dialect, 6 in passes for the “linalg” dialect, 2
in passes for the “llvm” dialect, 2 in passes for the “scf”
dialect, and 2 in passes for the “sparse tensor” dialect.

• There are also 4 bugs that do not belong to any of the four
categories of passes, and we denoted them as “others”.

Root Cause Analysis By analyzing the 38 fixed bugs ac-
cording to developers’ discussion and corresponding patches,
we further summarized the root causes of these bugs. More-
over, for each root cause, we selected one bug as the illustrative
example.

Incomplete Verifier (IV): Each pass has a verifier to check
the compatibility between the pass and some operations. This
root cause is that a necessary verifier of a pass is missing
or incomplete, which causes the pass works on incompatible
operations, leading to a crash. 7 (out of 38) fixed bugs are
due to this root cause. For example, as shown in Fig. 3,
Bug #59496 was caused by the “convert-tensor-to-spirv” pass
working on the arith.extsi operation with an incompat-
ible type (i.e., i64). Hence, a crash occurred. Subsequently,
it is fixed by adding a verifier to check such cases in order to
ensure compatibility between the pass and the operation.

Incorrect Pattern (IP): Each pass uses a set of patterns to



TABLE II: Details of Submitted/Confirmed/Fixed bugs detected by MLIRSmith

Bug Id Root Cause Pass Category Status Bug Id Root Cause Pass Category Status

#58258 - Dialect-Specific (affine) confirmed #59714 - Conversion confirmed
#58411 IRL Dialect-Specific (linalg) fixed #59970 Others Dialect-Specific (sparse tensor) fixed
#58745 IRL General Transformation fixed #59972 - Others confirmed
#58746 IRL General Transformation fixed #59986 IV Conversion fixed
#58747 IP Dialect-Specific (linalg) fixed #59987 IA Conversion fixed
#58748 - Dialect-Specific (linalg) confirmed #59989 IRL Conversion fixed
#58749 IP Conversion fixed #59991 - Dialect-Specific (linalg) confirmed
#58803 - Conversion confirmed #59993 IA Conversion fixed
#58805 UD Conversion fixed #59994 IRL Dialect-Specific (affine) fixed
#58807 IP Dialect-Specific (arith) fixed #60018 - Conversion confirmed
#58869 - Dialect-Specific (linalg) confirmed #60070 UD Conversion fixed
#59135 IRL General Transformation fixed #60093 IP General Transformation fixed
#59136 IP Conversion fixed #60094 IRL Dialect-Specific (scf) fixed
#59182 IV Conversion fixed #60186 Others Others fixed
#59234 IRL Dialect-Specific (affine) fixed #60193 IRL General Transformation fixed
#59442 - Bufferization confirmed #60195 IV Dialect-Specific (sparse tensor) fixed
#59443 IRL Dialect-Specific (scf) fixed #60197 UD Conversion fixed
#59444 IA Dialect-Specific (affine) fixed #60199 IV Conversion fixed
#59445 - Bufferization submitted #60214 IP Others fixed
#59454 - Conversion confirmed #60216 - Others confirmed
#59455 IRL General Transformation fixed #59725 - Dialect-Specific (linalg) submitted
#59460 IRL Dialect-Specific (llvm) fixed #59726 - General Transformation submitted
#59461 IRL Dialect-Specific (affine) fixed #61054 IA Conversion fixed
#59462 UD Dialect-Specific (llvm) fixed #61056 IV General Transformation fixed
#59496 IV Conversion fixed #61094 IP Conversion fixed
#59617 IP Dialect-Specific (arith) fixed #61380 IRL Conversion fixed
#59703 - General Transformation submitted

  1.  func.func @type_conversion_failure(%arg0: i32) {
  2.      %1 = arith.extsi %arg0 :  i32 to i64
  3.      return
  4.  }

Fig. 3: Bug#59496: Incomplete Verifier

  1.  %res = scf.if %cond -> (memref<8xi32>) { 
  2.      scf.yield %arg0 : memref<8xi32>
  3.  } else {
  4.      scf.yield %arg1 : memref<8xi32>
  5.  }

Fig. 4: Bug#59136: Incorrect Pattern

match the operations that it will transform/optimize. If some
patterns are incorrect, a pass will transform/optimize unex-
pected operations, leading to a crash. 9 fixed bugs are caused
by this root cause. For example, Bug #59136 was triggered by
the MLIR program shown in Fig. 4. This program contains a
scf.if operation that returns a memref without specifying
SPIR-V Storage Class, which should not be processed by the
“convert-scf-to-spirv” pass. Due to incorrect pattern, the pass
unexpectedly operates on this operation. This bug was fixed
by correcting the pattern to avoid mismatching this kind of
operations.

  1.  vector.reduction  s0)>  1.  vector.reduction <add>, %arg0 : vector<f32> into f32

Fig. 5: Bug#60193: Incorrect Rewrite Logic

  1.  %0 = vector.transfer_read %arg[], %f0 { ... } : 
          tensor<f32>, vector<1xf32> 

Fig. 6: Bug#60197: Unregistered Dialect

Incorrect Rewrite Logic (IRL): During the transforma-
tion/optimization process, passes rewrite matched operations
to new ones. However, if the rewrite logic is incorrect,
the pass will produce incorrect operations. 13 fixed bugs
belong to this root cause. For example, Bug #60193 was
triggered by the program shown in Fig. 5, which contains
a vector.reduction operation that summed up all the
elements in the vector %arg0. The canonicalization pass aims
to rewrite it to a vector.extract operation, but ignores
the case where the rank is 0. That is, the logic of this pass
just considers the cases where the rank is at least 1, leading
to a crash on this program. By modifying the rewrite logic to
include this case, this bug was fixed.

Unregistered Dialect (UD): To accomplish the transfor-
mation between an operation in a dialect and an operation
in another dialect, the latter dialect should be registered in
the pass. Otherwise, the transformation will crash and fail to



  1.  #map = affine_map<()[s0] -> (s0)>
  2.  func.func @func(%arg0: memref<?xf32>, %0: index){ 
  3.      %dim = memref.dim %arg, %0 : memref<?xf32> 
  4.      %1 = affine.apply #map()[%dim]
  5.      return
  6.  }

Fig. 7: Bug#59993: Incorrect Assertion

create the target operation. 5 fixed bugs are caused by this root
cause. For example, Bug #60197 was triggered by the program
shown in Fig. 6 under the “convert-vector-to-scf” pass. This
pass attempted to transform the vector.transfer_read
operation to a tensor.extract operation, but since the
tensor dialect was not registered in the pass, causing that
the transformation cannot be completed. To resolve this bug,
the missing dialect has to be registered in the pass.

Incorrect Assertion (IA): There are a lot of assertions in
MLIR compiler infrastructure, which are used to verify inter-
nal states by specifying invariants at certain code locations.
If an assertion is incorrect, the transformation/optimization
process will crash even though the internal state is correct.
That is, it will prevent valid programs from being processed. 4
fixed bugs belong to this root cause. For example, Bug#59993
was triggered by the program shown in Fig. 7. At Line 4,
the #map attribute of the affine.apply operation takes
%dim as a symbol. This is a valid program that should be
appropriately transformed. However, the assertion in the “scf-
for-loop-peeling” pass incorrectly assumes that %dim must
have a concrete value, although it is retrieved from a memref
whose dimension size cannot be statically determined (Line 3).
This leads to a crash. Fixing the assertion resolved this bug.

C. RQ2: Comparison between MLIRSmith and NNSmith

For sufficient evaluation, we compared MLIRSmith with
two baselines, i.e., NNSmith (IREE) and NNSmith (ONNX-
MLIR). NNSmith is a high-level source program generator
for deep learning compilers, which is indirect to fuzz MLIR
compiler infrastructure by transforming high-level computa-
tion graphs to MLIR programs through two frontends. We ran
each technique for 24 hours and repeated the experiment five
times to show the aggregated results.

Fig. 8a shows the number of bugs detected by each tech-
nique and analyzes their overlap. From this figure, MLIR-
Smith detected 23 bugs, while NNSmith (IREE) and NNSmith
(ONNX-MLIR) detected only 6 and 7 bugs, respectively.
In particular, 15 out of 23 bugs detected by MLIRSmith
cannot be detected by both baselines. The results demonstrate
the significant superiority of developing an effective MLIR
program generator over the baseline techniques indirect to
fuzz MLIR compiler infrastructure. Although both baselines
detected a few unique bugs in this experiment, all of them
can be detected by MLIRSmith during the two-month fuzzing.
However, these unique bugs detected by MLIRSmith cannot
be detected by both baselines with longer fuzzing time due to

TABLE III: Diversity comparison

Metric MLIRSmith
NNSmith
(IREE)

NNSmith
(ONNX-MLIR)

dialects 12 3 2
dialect pairs (control/data) 62 / 89 3 / 2 2 / 1
operation 125 35 41
operation pairs (control/data) 1772 / 2199 39 / 338 47 / 153

the limited diversity of their generated MLIR programs, which
will be discussed in detail later.

Further, we investigated the reason for the superiority of
MLIRSmith by measuring the covered lines and branches in
MLIR compiler infrastructure and the diversity of generated
MLIR programs. Fig. 8b and Fig. 8c show the number of
lines and branches covered by MLIRSmith and baselines as
well as their overlap analysis results, respectively. From these
figures, MLIRSmith covered 1.95× and 2.36× more lines and
2.26× and 2.78× more branches than NNSmith (IREE) and
NNSmith (ONNX-MLIR), respectively. In particular, 24,918
lines and 19,539 branches covered by MLIRSmith cannot be
covered by both baselines.

We then compared MLIRSmith and baselines in terms of the
diversity of their generated MLIR programs. Table III shows
the number of covered dialects (and operations), the number
of covered dialect pairs (and operation pairs) with control
dependency, and the number of covered dialect pairs (and
operation pairs) with data dependency, respectively. From this
table, MLIRSmith outperforms both baselines in terms of all
these metrics. Specifically, the generated MLIR programs by
MLIRSmith covered 4.00× and 6.00× more dialects, 20.67×
and 31.00× more dialect pairs with control dependency,
44.50×, and 89.00× more dialects pairs with data depen-
dency, 3.57× and 3.05× more operations, 45.44× and 37.70×
more operation pairs with control dependency, and 6.51×
and 14.37× more operation pairs with data dependency than
NNSmith (IREE) and NNSmith (ONNX-MLIR), respectively.

Overall, the diversity of the MLIR programs transformed
from high-level source programs generated by NNSmith is
limited, which tends to explore fixed patterns of dialects and
operations and thus leads to less code coverage and fewer
detected bugs than MLIRSmith. Specifically, NNSmith (IREE)
can only cover tosa, func and builtin dialects, and NN-
Smith (ONNX-MLIR) can only cover llvm and builtin
dialects. This also confirms the contribution of developing an
MLIR program generator (i.e., MLIRSmith), which can more
flexibly explore dialects, operations, and their combinations,
and thus significantly improve the fuzzing effectiveness.

D. Threats to Validity

The threat to internal validity mainly lies in the imple-
mentation of MLIRSmith. To reduce this threat, two authors
carefully checked all the code and wrote test cases to test
MLIRSmith.

The threat to external validity mainly lies in the subject used
in our study. Indeed, there are many revisions of the MLIR



(a) Detected Bugs (b) Covered Lines (c) Covered Branches

Fig. 8: Comparison of the number of detected bugs, covered lines, and covered branches

compiler infrastructure, but we just used the latest revision as
the subject. This is because it is more significant to detect
previously unknown bugs. In the future, we can continue
fuzzing future revisions with MLIRSmith.

The threats to construct validity mainly lie in randomness
and baselines. To reduce the former threat, we repeated the
comparison experiment with baselines for five times and
reported the aggregated results. To reduce the latter threat,
we tried our best to migrate NNSmith to fuzz the MLIR
compiler infrastructure. Our study showed the limitation of
such a high-level source program generator in MLIR compiler
infrastructure fuzzing. In the future, we can try other high-level
source program generators (as well as AFL [29] despite likely
generating invalid programs) for more sufficient investigation.

V. DISCUSSION

A. Efficiency

We investigated the efficiency of MLIRSmith. During 24-
hour fuzzing, MLIRSmith ran 270 MLIR programs on average,
while NNSmith (IREE) and NNSmith (ONNX-MLIR) ran 392
and 615 MLIR programs, respectively. Although MLIRSmith
is less efficient than both baselines, it is much more effective,
demonstrating its high cost-effectiveness. We further analyzed
the reason why MLIRSmith is less efficient than both base-
lines. This is because the size of the MLIR programs generated
by MLIRSmith is larger than those of both baselines, that is,
the MLIR programs generated by MLIRSmith contain more
operations. Transforming or optimizing them under the same
pass tends to be more time-consuming.

B. Future Work

MLIRSmith can be further improved from the following
aspects. First, we can make MLIRSmith support more dialects,
which can directly improve its test effectiveness. Second,
the current MLIRSmith mainly adopts a random process to
generate MLIR programs. Many existing studies on fuzzing
have demonstrated some guidance is helpful in improving the
fuzzing effectiveness. In the future, we can incorporate ef-
fective guidance (such as coverage) to MLIRSmith. Third, the

current MLIRSmith treats all the dialects equally. In the future,
we can prioritize dialects to test more important functionalities
in MLIR earlier. Fourth, due to the two-phase generation
strategy in MLIRSmith, we can conveniently incorporate more
effective templates for generating MLIR programs, which is
also a promising direction. Lastly, the test oracle used in
MLIRSmith is just crash. In the future, we can incorporate
more test oracles to MLIRSmith, such as EMI-based test
oracles [25], [30], [31].

C. Significance of Fuzzing MLIR Compiler Infrastructure

MLIRSmith is specific to the MLIR compiler infrastructure,
but its significance is not limited to the single system. This is
because many compilers are built on top of MLIR compiler
infrastructure, fuzzing MLIR compiler infrastructure can help
ensure the reliability of all of its powered compilers.

VI. RELATED WORKS

Our work is closely related to test program generation in
compiler testing. The existing test program generation tech-
niques are mainly divided into two categories: test program
generation from scratch [32], [33], [12], [13], [14], [34] and
test program generation from seed programs [35], [36], [17],
[37], [25], [38], [29]. Our work belongs to the first category.
In the following, we introduce related work from the two
aspects. More details about compiler testing can be found in
the survey [39].

Test program generation from scratch: This category of
techniques generate test programs based on grammars to fuzz
compiler testing. For example, Yang et al. [12] proposed
Csmith, which randomly generates C programs with different
code features. Based on Csmith, Lidbury et al. [13] proposed
CLsmith, which lifts Csmith to generate OpenCL programs
with six modes randomly. Liu et al. [14] proposed NNSmith,
which generates ONNX computation graph programs for test-
ing deep learning compilers. Ma et al. [34] proposed HirGen,
which generates computation graph programs represented by
Relay IR for testing TVM.



Different from them, our work proposes MLIRSmith to
generate MLIR programs for fuzzing MLIR compiler in-
frastructure rather than the compilers specific to a domain.
Moreover, MLIR programs have different characteristics (e.g.,
data structure and semantics) from the programs targeted by
these existing techniques. In our study, we also compared
MLIRSmith with the representative high-level source program
generator (i.e., NNSmith), demonstrating the superiority of
MLIRSmith in fuzzing MLIR compiler infrastructure.

Test program generation from seed programs: This tech-
nique category generates test programs by mutating or synthe-
sizing test programs based on multiple seed programs. For ex-
ample, Holler et al. [36] proposed LangFuzz to synthesize test
programs by code snippet extraction and replacement based on
seed programs for JavaScript engine fuzzing. Zhao et al. [17]
proposed JavaTailor to generate test programs by inserting
code ingredients from historically bug-revealing programs into
seed programs for JVM fuzzing. Based on JavaTailor, Gao et
al. [37] further proposed VECT to promote the JVM Testing
performance via vectorizing ingredients. Zang et al. [40]
proposed JAttack to generate new test programs by filling
predefined holes in template classes with domain knowledge
for JVM fuzzing. Le et al. [25] proposed Equivalence Modulo
Inputs (EMI) to fuzz C compilers, which generates equivalent
programs by removing unexecuted code under a set of inputs
in seed programs. Donaldson et al. [38] proposed GLFuzz for
OpenGL compilers, which designs several mutation strategies
to construct equivalent programs. Also, AFL (i.e., American
Fuzzy Loop [29]) is a general fuzzer that designs many byte-
level and token-level mutation rules to modify seed inputs. In
particular, Bang et al. [41] proposed mlir-tv, which applies
translation validation [42] on seed programs to verify the
correctness of pass implementation.

Our work is orthogonal to this category of techniques, since
the generated MLIR programs by MLIRSmith can be used as
seed programs for them. In the future, we can explore their
integration to further improve the fuzzing effectiveness.

VII. CONCLUSION

We propose the first technique, MLIRSmith, to fuzz MLIR
compiler infrastructure, which is an emerging system benefit-
ing the construction of compilers in various domains. Its core
lies in passes (supporting various transformations and opti-
mizations on MLIR programs) and dialects (supporting differ-
ent levels of abstraction in MLIR). To improve the fuzzing
effectiveness, MLIRSmith carefully generates valid and di-
verse MLIR programs by syntax-guided program template
construction and context-aware MLIR program instantiation.
By fuzzing the latest revision of MLIR compiler infrastructure
for two months, MLIRSmith detected 53 previously unknown
bugs, 49/38 of which have been confirmed/fixed by developers.
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