
Regression Fuzzing for Deep Learning Systems

Hanmo You
College of Intelligence and Computing

Tianjin University
Tianjin, China

youhanmo@tju.edu.cn

Zan Wang
College of Intelligence and Computing

Tianjin University
Tianjin, China

wangzan@tju.edu.cn

Junjie Chen†
College of Intelligence and Computing

Tianjin University
Tianjin, China

junjiechen@tju.edu.cn

Shuang Liu
College of Intelligence and Computing

Tianjin University
Tianjin, China

shuang.liu@tju.edu.cn

Shuochuan Li
College of Intelligence and Computing

Tianjin University
Tianjin, China

lishuochuan@tju.edu.cn

Abstract—Deep learning (DL) Systems have been widely used
in various domains. Similar to traditional software, DL system
evolution may also incur regression faults. To find the regression
faults between versions of a DL system, we propose a novel
regression fuzzing technique called DRFuzz, which facilitates gen-
erating inputs that trigger diverse regression faults and have high
fidelity. To enhance the diversity of the found regression faults,
DRFuzz proposes a diversity-oriented test criterion to explore as
many faulty behaviors as possible. Then, DRFuzz incorporates
the GAN model to guarantee the fidelity of generated test inputs.
We conduct an extensive study on four subjects in four regression
scenarios of DL systems. The experimental results demonstrate
the superiority of DRFuzz over the two compared state-of-the-art
approaches, with an average improvement of 1,177% and 539%
in terms of the number of detected regression faults.

Index Terms—Regression, Fuzzing, Deep Learning

I. INTRODUCTION

Deep learning (DL) systems have been widely used in

various domains, including safety-critical domains, such as

autonomous driving [1], medical diagnosis [2], and face

recognition [3]. Like traditional software [4]–[6], DL systems

also evolve to satisfy new requirements or fix known faults.

For instance, Apple Face-ID has been updated to a new

version in iOS 14.5 so as to allow face recognition with

masks on, which brings huge convenience in the COVID-19

pandemic [7]. However, DL system evolution may also incur

regression faults in the process. In July 2021, after the Face

Unlock function of Galaxy S10 5G was updated to a new

version, users failed to authenticate themselves regardless of

the lighting condition. This is a DL regression fault, which

affects Samsung’s reputation and causes economic losses [8].

Such faults are harmful but are easy to be concealed by the

overall performance improvement of the DL system. After

fixing known faults in the prior version of a DL model,

developers usually run test data to check whether the overall

performance of the new DL model is improved, but overlook

the risks incurred by the evolution, e.g., originally passed test

†Junjie Chen is the corresponding author.

inputs fail in the new version [9], which hinders the detection

of regression faults in DL systems.

Detecting regression faults refers to finding test inputs

that make the current version produce wrong predictions

but make the prior version produce correct predictions. That

is, regression faults are caused by (minor) evolution, and

detecting them should carefully mine the (minor) difference

between versions. Several regression fuzzing techniques have

been proposed for traditional software, which can clearly

locate code changes in software evolution [10] and utilize

them to guide the regression fuzzing process. However, they

are not applicable to DL systems, which consist of a large

number of neurons connected with weighted links and do not

have explicit logical structures. The differences brought by

evolution are significant for DL systems if we measure neuron

changes (e.g., changes of weights between neurons), but the

new version tends to behave similarly to the prior version

if we measure the overall performance of the DL system,

e.g., precision and recall for classification models. Unlike

code changes that tend to affect only a small portion of code

(relevant to the changed code), neuron changes usually affect a

large portion of neuron links and thus cannot precisely reflect

the behavior difference between versions of DL systems. The

significant difference between traditional software and DL

systems indicates that regression fuzzing techniques specific

to DL systems are definitely desired.

In recent years, some fuzzing techniques, such as Deep-

Hunter [11], [12], have been proposed to detect faults in DL

systems. However, these techniques aim to detect faults in

a specific version of the DL system rather than regression

faults. DiffChaser [13] is the most related technique, which

aims to detect disagreements between the original model and

its quantized model. It just considers whether a test input

is generated near the decision boundary of one version for

disagreement detection but ignores the differences between

versions. As claimed by the existing work [14], [15], many

fault-triggering inputs actually fool the DL model with very

high confidence. That results in the poor effectiveness of

82

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00019

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

19

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

DiffChaser in detecting DL regression faults (confirmed by

our study in Section IV-B1). Moreover, Diffchaser ignores

the diversity and fidelity of generated input, further limiting

its practical use. In particular, it was just proposed for the

quantization scenario without exploring general regression

scenarios. To sum up, it is necessary to elaborately design a

regression fuzzing technique by capturing the (minor) differ-

ence due to evolution, which can complement existing fuzzing

techniques (e.g., DeepHunter and DiffChaser) for sufficient

quality assurance of DL systems.

In this work, we propose a novel regression fuzzing tech-

nique for DL systems called DRFuzz. Ideally, such a tech-

nique is required to satisfy three criteria, which also corre-

spond to three technical challenges:

• Fault-triggering: The generated test inputs by DRFuzz

should reveal as many regression faults as possible, and

this is the core criterion. To achieve this goal, DRFuzz uti-

lizes the prediction difference between versions, rather than

neuron changes or the decision boundary of one version, to

capture the influence brought by evolution. Such information

is more direct in revealing regression faults and does not

rely on white-box information, making it more efficient. By

incorporating the feedback from existing generated inputs

and designing a series of mutation rules, DRFuzz guides the

process of generating new test inputs toward the direction

of amplifying the prediction difference between versions.

• Diversity: Revealing diverse regression faults is more helpful

in improving the quality of DL systems. DRFuzz measures

the diversity of regression faults from two dimensions: 1) the

initial seeds used for generating fault-triggering test inputs

and 2) the faulty behaviors produced by the fault-triggering

test inputs (to be defined in Section III-A). To improve

the diversity of detected regression faults, DRFuzz designs

an adaptive seed maintenance strategy, which dynamically

adjusts the selection probabilities of seeds once a fault-

triggering test input is generated.

• Fidelity: It is important to ensure the fidelity of each

fault-triggering test input (i.e., preserving original semantics

and looking natural to humans) since such test inputs are

more concerned by developers. Indeed, test inputs with

low fidelity are easy to fool DL systems, but they are not

considered within the scope of the DL systems. To obtain

test inputs with high fidelity, DRFuzz designs a GAN-based

fidelity assurance method, which first learns a discriminator

via GAN to discriminate natural inputs with synthetic inputs

precisely and then utilizes it to ensure that the generated test

inputs resemble natural inputs in the fuzzing process.

We conducted an extensive study on four subjects under four

different regression scenarios (i.e., supplementary training,

adversarial training, model fixing, and model pruning, which

will be introduced in Section IV-A2). We compared DRFuzz

with two state-of-the-art techniques, and the experimental

results show that DRFuzz outperforms them with an average

improvement of 539% on DeepHunter [11] and 1,177% on

DiffChaser [13] in terms of the number of detected regression

faults. Also, DRFuzz shows consistently stable performance

across different subjects and regression scenarios. Moreover,

fine-tuning with regression-fault-triggering inputs generated

by DRFuzz can averagely fix 82.90%, 71.72%, and 71.48%

regression faults triggered by inputs generated by DRFuzz,

DeepHunter, and DiffChaser, respectively, and outperforms

compared techniques. The results further demonstrate the

value of DRFuzz in improving model quality.

In summary, we make the following major contributions:

• We take the first step in formalizing the concepts for

regression testing of DL systems.

• We propose a heuristic-based fuzzing framework that

facilitates detecting regression faults with high diversity.

• We propose a GAN-based fidelity assurance technique,

which assists in generating test inputs with high fidelity.

• We have conducted an extensive study on four subjects

under four regression scenarios, and the results demon-

strate the effectiveness of our proposed approach.

II. DEFINITION

The regression process of Deep Learning Systems can be

formally defined as below:

Definition 1. Regression. Given a Deep Learning (DL) model
M1. The regression process on M1 is defined as improv-
ing M1 through re-training/fine-tuning the model or directly
changing the neuron weights to obtain M2, which performs
better than M1 on some measurements (such as accuracy,
robustness, or efficiency). We refer to M1 as the prior version
model and M2 as the regression model of M1.

Given an N -class classification model M and an input set

X , the prediction process ofM maps an input x ∈ X to an N -

dimensional vector C̃M[x], containing the confidence on each

category. The category with the highest confidence in C̃M[x]
is denoted as cM[x] and is considered as the prediction result,

which is formally defined in formula (1).

cM[x] = argmax C̃M[x] (1)

Definition 2. Regression fault. Given a prior version model
M1, its regression model M2, a test input x, and its ground
truth label y, x is called to trigger a regression fault if x
is correctly predicted by M1, yet wrongly predicted by M2,
i.e., cM1 [x] = y ∧ cM2 [x] �= y. In addition, we denote x as
the regression fault triggering input and the faulty behavior
triggered by x as (cM1

[x]→ cM2
[x]).

III. APPROACH

We propose a novel regression fuzzing technique called

DRFuzz, and Figure 1 depicts the overview of DRFuzz.

DRFuzz selects a seed input each time to conduct mutation,

and the mutated inputs are passed into the GAN-based Fidelity

Assurance model to identify inputs with high fidelity, which

are then executed by both the original model and the regression

model. If the two models provide different prediction results,

then a regression-fault-triggering input is identified. The inputs

83

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The framework of DRFuzz

that do not trigger regression faults will be maintained with

carefully designed seed maintenance strategies in order to

improve the diversity of the inputs.

In this Section, we provide detailed descriptions of how to

tackle the three challenges presented in Section I. In particular,

we discuss the diversity measurement in Section III-A, the

GAN-based fidelity assurance technique in Section III-B, and

lastly, introduce the heuristic-based regression fuzzing process,

which facilities diverse fault-triggering, in Section III-C.

A. Diversity Measurement

It is important to generate as many fault-triggering test

inputs as possible. However, if the generated inputs trigger

duplicate faults, it would limit the capability of improving

the quality of DL systems. Therefore, it is crucial to reveal

diverse regression faults. However, it is hard to determine

the root cause of each regression fault, and thus inspired by

the existing work [11], [16], DRFuzz measures the diversity

of regression faults from two aspects, i.e., the initial seeds

used for generating fault-triggering test inputs and the faulty

behaviors produced by the fault-triggering test inputs. Please

note that initial seeds refer to those seeds added to the corpus

before the fuzzing process starts.

The first aspect considers static information of the fuzzing

process, i.e., the initial seeds. The intuition is that if two fault-

triggering inputs are obtained from different initial seeds, then

they are more likely to trigger different regression faults [11],

[17], [18]. Formally, suppose two fault-triggering test inputs

tai and tbj are generated by conducting a series of mutations

on initial seeds ta0 and tb0, i.e., (ta0 → . . . → tai-1 → tai)
and (tb0 → . . .→ tbj-1 → tbj), respectively. If ta0 and tb0 are

different, then tai and tbj are more likely to trigger different

regression faults.

The second aspect reflects the dynamic behavior of a

regression-fault-triggering test input, which complements the

static initial seed information to assist in better diversification

of faults. The intuition is that if two fault-triggering inputs

show different faulty behaviors, then they are more likely to

trigger different regression faults [16], [19]. We denote the

predicted class for a test input tai by the prior version M1 as

cM1 [tai] and the predicted class for tai by the current version

M2 as cM2 [tai]. Suppose that tai and taj are two regression-

fault-triggering inputs mutated from the same initial seed ta0,

cM1 [tai] = cM1 [ta0] = cM1 [taj] and cM2 [tai] �= cM1 [ta0] �=
cM2

[taj], it indicates that tai and taj displays different faulty

behaviors (cM1
[tai]→ cM2

[tai]) and (cM1
[taj]→ cM2

[taj]),
then they are likely to trigger different regression faults.

Based on the static initial seeds and the dynamic faulty

behaviors for fault-triggering test inputs, DRFuzz adopts the

tuple [ta0, (cM1 [tai] → cM2 [tai])] to approximately distin-

guish the fault triggering inputs and uses the tuple diversity to

represent the diversity of the fault-triggering inputs.

B. GAN-based Fidelity Assurance

It is also important to ensure the fidelity of fault-triggering

test inputs since it is easy for test inputs with low fidelity to

fool a DL system but are not concerned by developers due to

being out of the scope of the DL system [20]. Therefore, test

inputs with high fidelity are more meaningful for regression

fuzzing in practice. However, conducting iterative mutations

on an initial seed is likely to produce test inputs with low

fidelity, and thus it is important for DRFuzz to reserve test

inputs with high fidelity from a number of mutated test inputs.

Some methods, e.g., SSIM [21] and Euclidean Dis-

tance [22], have been proposed to measure the fidelity of

test inputs. SSIM uses the contrast and brightness values

derived from pixels to measure the structural similarity of

images, while Euclidean Distance directly uses pixel values

to measure image similarity. Both of them highly rely on the

pixel-wise difference between images and are not applicable

to the test inputs generated with some mutation operators, e.g.,

image scaling, that intensively change pixels but retain nearly

all semantic information. Therefore, those measurements may

discard a large number of test inputs with high fidelity and thus

limit the capability of detecting test inputs triggering different

faulty behaviors.

To mitigate the limitations of existing methods, we adopt

Generative Adversarial Network (GAN) for fidelity assurance.

GAN is composed of a Generator network and a Discriminator

network. During the training process, the Generator network

synthesizes fake images based on randomly initialized vectors.

It sends generated images to the Discriminator network to

distinguish the given fake inputs from their corresponding

original inputs in the training set. GAN trains Discrimina-

tor and Generator in alternating periods. The purpose is to

improve the performance of both models until synthesized

images are indistinguishable and the Discriminator can filter

out most out-of-scope synthesized images. The Discriminator

will be used to assure the fidelity of test inputs generated by

DRFuzz, as it considers semantic similarity [1] rather than

strict pixel-wise difference.

In DRFuzz, we adopt the DCGAN model [23] for the

following reasons: 1) It improves classic GAN on model

structure, in which deep convolution structure facilitates better

feature representation and enables the Generator to generate

fake inputs with high fidelity. [23], [24]. Thus, the Dis-

criminator is able to distinguish high-fidelity fake inputs. 2)

It has been demonstrated to be efficient in prediction and

84

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I
MUTATION RULES

Pixel-Level Mutation Rule Description Image-Level Mutation Rule Description

Pixel Adding Gaussian Noise Adds noise on pixels following Gaussian distribution Image Scaling Amplifies or shrinks the size of the image
Pixel Adding Salt & Pepper Noise Converts the color of certain pixels into black or white Image Translation Moves the pixels of the image for a certain distance
Pixel Adding Multiplicative Noise Multiplies noise on pixels following Gaussian distribution Image Shearing Moves the pixels horizontally while fixing vertical coordinates
Patch Coloring Black Blocks the effect of a patch by coloring it black Image Rotating Rotates the image for a certain angle
Patch Coloring White Blocks the effect of a patch by coloring it white Image Brightness Adjustment Adjusts the brightness to simulates the illumination changes
Patch Color Reverse Reverses the color of a patch for max opposite influence Image Contrast Adjustment Modifies contrast value, the inter-pixel brightness of the image
Patch Shuffling Shuffles the pixels to break interrelations of adjacent pixels Image Blurring Smoothies the color transition in the image

Image Dilation Expanding certain regions to change contents shape
Image Erosion Removing the edgy pixels to shrink the size of certain region

training processes compared with more complex GAN-based

models. That is, it brings less overhead to the overall fuzzing

process [25].

Specifically, DRFuzz first pre-processes the training set to

normalize each pixel value into the range of [0, 1], which

accelerates the convergence process and improves training

performance. We use the training set of model M1 as the

training set of DCGAN. During the training process, the

Generator will synthesize an image from a random initialized

vector. The Discriminator takes the synthesized image, which

is labeled 0 (indicating fake), and the image in the training

set, which is labeled 1 (indicating real), as input. For each

given input, the well-trained Discriminator can output a score

in the range of [0, 1], where a higher score indicates the given

input resembles the training set with higher fidelity. During the

fuzzing process, we feed an initial seed into the Discriminator

to get a fidelity score, which serves as the fidelity threshold for

filtering out the low-fidelity inputs generated from this initial

seed.

C. Heuristic-based Regression Fuzzing Process

Since the input space for a DL system is enormous, and

regression faults are more concealed, it is quite inefficient

to find fault-triggering test inputs by randomly exploring the

entire space. To improve the regression fuzzing process, we

expect that in each iteration, the new test input generated

through mutation can produce a larger prediction difference

(measured by the prediction probability difference in each

class) between versions than that produced by the test input

before mutation. When the prediction difference is accumu-

lated to a large value, models of different versions could make

different predictions, which indicates that a regression fault is

triggered by the generated test input. With this expectation, we

design a search strategy in DRFuzz to guide the generation of

test inputs toward the direction of amplifying the prediction

difference between versions. In this way, fault-triggering test

inputs can be generated more efficiently. More specifically, the

heuristic-based regression fuzzing process in DRFuzz contains

two major steps: 1) mutation rule selection (to be presented

in Section III-C1) and 2) maintenance of the seed pool (to

be presented in Section III-C2). We follow the standard high-

level fuzzing process [11], [26], but carefully design specific

steps in DRFuzz to cater to the DL regression fuzzing task.

1) Mutation: Following the existing work [11], [27], DR-

Fuzz conducts mutation on existing seed inputs to generate

new test inputs.

Mutation Rules. In DRFuzz, we adopt all the mutation rules

for images designed by the existing work [11], [27], [28], as

these mutation rules change a given test input from different

perspectives and can increase the possibility of generating

test inputs triggering diverse regression faults. In total, we

implemented 16 mutation rules in DRFuzz. Besides generat-

ing diverse fault-triggering test inputs, another criterion for

mutation rules is to preserve the semantics of a test input

after mutation. That is, we should carefully design the usage of

each mutation rule in DRFuzz. We observe that some mutation

rules preserve image semantics by changing only a small set

of pixels in an image, while some other mutation rules have to

be applied to the whole image to avoid the violation of image

semantics. According to the usage of each mutation rule, we

classify them into two categories, i.e., Pixel-Level Mutation
and Image-Level Mutation.

Pixel-Level Mutation aims to change a small set of pixels in

an image to generate a new test input. It achieves the goal of

preserving the semantics of a test input by making slight pixel-

wise changes on the whole image. DRFuzz randomly selects a

small set of pixels (i.e., 0.5% total pixels) for mutation. Image-

Level Mutation aims to change the whole image to generate

a new test input. Intuitively, it is more likely to preserve

the semantics of a test input by changing it as slightly as

possible, but this category of mutation rules can make a test

input become unrealistic if changing only a part of it. For

example, scaling/rotating only a part of an image can produce

an image with low fidelity than directly scaling/rotating the

whole image. That is, this category of mutation rules can

simulate real-world scenarios more effectively when applying

them to the whole image. The detailed mutation rules are listed

in Table I.

Mutation Rule Selection. Different mutation rules change the

test input by different degrees and thus induce the seed towards

triggering different faulty behaviors. Intuitively, if a mutation

rule can frequently generate test inputs with high fidelity

and amplify the prediction difference towards becoming a

regression fault, it should be selected more frequently in the

fuzzing process. Therefore, we design a reward function to

calculate the priority score for each mutation rule, which is for-

mally defined in Formula (2). #DiffTriggerInputs refers to the

number of generated inputs that trigger prediction difference

between the two versions of models, and #FidelInputs refer

85

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

to the number of generated high-fidelity inputs. The reward

function is designed with two goals, i.e., the probability of a

mutation rule to bring a large prediction difference between

versions and the probability of a mutation rule to generate test

inputs with high fidelity. Then, DRFuzz ranks mutation rules

based on their rewards in descending order.

Reward =
#DiffTriggerInputs

#TotalSelect
× #FidelInputs

#TotalSelect
(2)

Please note that it is not tenable to only select mutation rules

with the highest rewards since it may lead to generating test

inputs with similar behaviors. Hence, all mutation rules should

have a certain probability of being selected, while mutation

rules with higher priority in the ranking should have larger

chances of being selected. That is, the current mutation rule

selection is affected by the historical behaviors of mutation

rules, which is a typical Markov Chain [29]. Thus, we can

model the mutation rule selection process as a Markov Chain

Monte Carlo (MCMC) problem [30], which is used to sample

from a probability distribution by constructing a Markov chain

converging to the desired distribution. Specifically, DRFuzz

adopts the Metropolis-Hastings (MH) algorithm [31] to guide

mutation rule selection. Based on the proposal distribution,

it selects a new mutation rule RA according to the current

mutation rule RB . Suppose all mutation rules can be ranked

by the score defined in formula (2), the possibility of selecting

mutation rule RA according to a given mutation rule RB

is calculated by the ranks, which are obtained according

to the reward of RA and RB . This is formally defined in

formula (3), where p is the probability of being successful in

one Bernoulli trial in geometric distribution used for approxi-

mating the desired distribution following the existing MCMC

framework [18], [32], ka and kb are ranks of RA and RB ,

respectively. Due to the space limit, more details on MCMC

can refer to the existing work [18], [32].

P (RA|RB) = min(1, (1− p)ka−kb) (3)

2) Seed Maintenance: The initial seed pool is the set

of test inputs used for testing the prior version of the DL

system. Since our goal is to detect regression faults, DRFuzz

conducts pre-processing to filter out the test inputs that make

the prior version produce wrong predictions. To facilitate

the effectiveness of generating diverse regression faults, it

is crucial to maintain a high-quality seed pool containing

two aspects, i.e., exploring more diverse initial seeds and

triggering more diverse faulty behaviors, according to the

diversity measurement defined in Section III-A. Therefore, we

propose three techniques to facilitate seed pool maintenance.

In particular, we 1) conduct potential input evaluations to

preserve those inputs that contribute to fault-triggering; 2)

propose seed probability update to select inputs that are more

likely to trigger regression faults; and 3) propose tree-based

seed pool trimming to remove redundant seeds.

Potential Test Input Evaluation. We carefully evaluate the

potential of generated inputs based on the diversity mea-

surement presented in Section III-A. In general, we want to

Fig. 2. Model Mutation Process as a Tree

maximize the number of different tuples in the seed pool.

Therefore, we filter the mutated inputs in each generation

and put those that change intensively towards non-ground-

truth categories in the seed pool. Specifically, given theith
generation of mutated test inputs and a regression model,

if the prediction probability on a non-ground-truth category

of an input changes intensively compared with the(i − 1)th
generation, it means this input is prone to trigger new faulty

behaviors, thus should be put into the seed pool for high-order

mutation.

Seed Probability Update. Intuitively, the mutated inputs,

which are more likely to change the predicted category

compared with their previous generations, should have more

chances of being selected for high-order mutation. To achieve

this goal, we propose a seed probability update strategy (shown

in (4a)) to lower the probability of a test input being selected

as its time of selection increases (controlled byNs) so that

the newly generated inputs are more likely to be selected. To

improve the diversity of initial seeds, which is an important

aspect of our diversity measurement, we also need to consider

the generation of each input to limit the chance of inputs with

the younger generation being selected. This is controlled by

hyper-parameter Ng in formula (4a).

Specifically, We adopt the exponential decay function, a

widely used decay strategy, shown in equation (4a), to adjust

the selection possibility for each new seed.Ng is the genera-

tion of the input, i.e., the number of mutations from the initial

seed to the current input, and Ns is the number of times the

seed is selected for mutation. The weightsw1 and w2 are used

to balance the influence of Ng andNs, and we empirically set

w1 to be 1 and w2 to be 0.5. Pinit is the maximum possible

rate, and Pfinish is the minimal possible rate after decaying

max_times times. max_timesis the maximum number of

times a seed can be mutated, which can limit the number of

similar seeds and avoid significant changes causing semantic

deviations from the initial seed to some degree.α is called the

exponential decay constant, which can affect the speed of the

decay process; it is calculated according to the formula (4b).

P = e−α(w1×Ng+w2×Ns)Pinit (4a)

α =
1

max_times
ln(

Pinit

Pfinish
) (4b)

86

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

Tree-based Seed Pool Trimming. The Trimming process aims

to trigger more diverse faulty behaviors by removing redundant

seeds, which potentially generate redundant faulty-behavior-

triggering inputs, from the seed pool. The mutation process

can be naturally modeled as a tree since, in each generation,

multiple mutated inputs are obtained based on different muta-

tion rules. As illustrated in Figure 2, the root is the initial seed

selected from the seed pool. Each node of the tree represents

a high-fidelity test input generated through fuzzing, and each

branch represents a mutation process conducted on the input

represented by its parent node. The brother nodes are inputs

mutated from the same seed with different first-order mutation

rules.

If a leaf node, e.g., t3.1, triggers a regression fault and can

be represented by [s, (cM1
[t3.1] → cM2

[t3.1])], the trimming

algorithm traverses the mutation trace from the root node to

the leaf node, i.e., s → t1.1 → t2.2 → t3.1. Then DRFuzz

carefully inspects if each seed represented by the correspond-

ing node along the trace has the potential to trigger a new

faulty behavior. Specifically, we estimate the fault-triggering

potential of the seed by the second highest confidence in the

prediction vector, as the category with the highest confidence

for t1.1 and t2.2 must be different from that for t3.1. If the

second highest confidence class in the predication vectors of

t1.1 and t2.2 on the regression model is equal to cM2
[t3.1], it

means that t1.1 and t2.2 are more likely to trigger the same

faulty behavior as that triggered by t3.1, and thus the seeds on

the trace should be removed from the seed pool. For efficiency

considerations, we trim the tree on the trace level.

Please note that if all kinds of faulty behaviors that an

initial seed could potentially trigger have been explored,

then all seeds originating from that initial seed should be

removed from the seed pool. If we are targeting an N -class

classification task, then a seed could potentially trigger N − 1
faulty behaviors, in which the prediction results on the seed

input deviate from its ground truth label.

IV. EVALUATION

We address the following research questions (RQs).

• RQ1: How does DRFuzz perform in detecting regression

faults?

• RQ2: Does each main component contribute to the over-

all effectiveness of DRFuzz?

• RQ3: Can DRFuzz help improve the quality of DL

systems in regression scenarios?

A. Experimental Setup

1) Subjects: To sufficiently evaluate the effectiveness of

DRFuzz, we used four pairs of datasets and DNN models

as subjects, i.e., LeNet-5 on MNIST, VGG16 on CIFAR10,

AlexNet on Fashion-MNIST (FM), and ResNet18 on SVHN,

which have been widely used in the existing studies on

DL testing [17], [33]–[36]. Specifically, MNIST is a 10-

class handwritten digit dataset [37]. CIFAR10 is a 10-class

ubiquitous object recognition dataset [38]. Fashion-MNIST

(FM) is a 10-class dataset of Zalando’s article images [39].

TABLE II
EXPERIMENT OF DRFUZZ.

Scenario M1 Acc. M2 Acc. Project

SUPPLY 85.87% 97.83% MNIST-LeNet5

SUPPLY 87.67% 87.88% CIFAR10-VGG16

SUPPLY 89.33% 90.34% FM-AlexNet

SUPPLY 88.85% 91.93% SVHN-ResNet18

ADV:BIM 98.07% 97.50% MNIST-LeNet5

ADV:BIM 87.92% 87.51% CIFAR10-VGG16

ADV:BIM 91.70% 90.96% FM-AlexNet

ADV:BIM 92.05% 91.90% SVHN-ResNet18

ADV:CW 98.07% 98.30% MNIST-LeNet5

ADV:CW 87.92% 88.00% CIFAR10-VGG16

ADV:CW 91.70% 91.87% FM-AlexNet

ADV:CW 92.05% 92.01% SVHN-ResNet18

FIXING 98.07% 98.12% MNIST-LeNet5

FIXING 87.92% 88.40% CIFAR10-VGG16

FIXING 91.70% 92.90% FM-AlexNet

FIXING 92.05% 92.10% SVHN-ResNet18

PRUNE 98.07% 98.12% MNIST-LeNet5

PRUNE 87.92% 76.27% CIFAR10-VGG16

PRUNE 91.70% 91.54% FM-AlexNet

PRUNE 92.05% 91.00% SVHN-ResNet18

* Please note that in SUPPLY scenario, we use 80% of the training set

to train M1 , and for the rest of the regression scenarios, we use

the entire training set to train M1 , so that the accuracy of M1 of

SUPPLY scenario is a bit lower than that of other scenarios.

SVHN is a 10-class street view house number dataset [40].

Note that all the models adopted in our subjects are different,

and they involve different degrees of model complexity (e.g.,

LeNet-5 consists of 7 layers with 236 neurons, while ResNet18

consists of 54 layers with 13,066 neurons).

2) Regression Scenarios: According to the definition of

Regression for DL systems in Section II. we studied four

typical regression scenarios, i.e., supplementary training, ad-

versarial training, white-box model fixing, and model pruning,

to evaluate the effectiveness of DRFuzz. Among the four

regression scenarios, the first two belong to the evolution

method of fine-tuning the prior version of the DL model,

while the remaining two belong to the method of directly

changing the neuron weights of the prior version. Table II

presents the basic information of the models of regression

scenarios. Column 1 presents the regression scenarios, and

Columns 2-3 present the accuracy of the prior version model

and the accuracy of the regression model, respectively. Column

4 presents the dataset-model pair of each subject.

Supplementary Training (denoted as SUPPLY), which fine-

tunes the model by incorporating more new training data and

then producing a new version of the model, is a widely-used

black-box means of improving the model accuracy in practice.

In our study, for each subject, we simulate this scenario by

sampling 80% of the training data in the subject to train the

prior version of the model and then using the remaining 20%

of the training data to fine-tune the prior version and obtain the

new version of the model. Specifically, we fine-tune the prior

version for 20 epochs and use the version with the highest

accuracy.

87

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

Adversarial Training (denoted as ADV) is proposed to

improve the robustness of a model against adversarial attacks,

which fine-tunes the model by incorporating adversarial inputs

and then produces a new version of the model. In our study,

for each subject, we simulate this scenario by sampling 5,000

training inputs in the subject to generate the same amount of

adversarial inputs with an existing adversarial input generation

method. Then, we use these adversarial inputs to fine-tune

the prior version and obtain the new version of the model.

In particular, we adopted two widely-used adversarial input

generation methods, i.e., BIM (Basic Iterative Method) [41]

and C&W (Carlini & Wagner) [42], in our study. Hence, this

scenario can be further divided into Adversarial Training –

BIM (denoted as ADV:BIM) and Adversarial Training – C&W

(denoted as ADV:CW). Specifically, we conduct adversarial

training for 20 epochs and use the version with the highest

robustness and minimum accuracy decrease.

White-Box Model Fixing (denoted as FIXING) is a white-box

way of improving the accuracy of a DNN model. Unlike black-

box supplementary training, it improves the model accuracy

by directly modifying the weights of the model. A self-

maintained state-of-the-art white-box model fixing method is

APRICOT [43], which divides the training set into several

subsets, each of which is used to build a sub-model, and then

the weights of the model are adjusted based on the weights

of these sub-models. In this way, a new version of the model

with greater accuracy can be produced without the fine-tuning

process. In our study, we adopted APRICOT to construct the

white-box model fixing scenario for evaluation.

Model Pruning (denoted as PRUNE) aims to shrink the

volume of the model and thus improve the prediction effi-

ciency through pruning unimportant parts in the DL model.

There are several model pruning tools in the literature [44]–

[46]. In this study, we adopted one of the most widely-used

tools, i.e., KerasSurgeon [46], to construct this scenario for

evaluation. Specifically, it prunes unimportant channels of the

last convolution layer in the model, producing a new version

of the model.

Please note that the quantization scenario targeted by Dif-

fChaser is not a regression scenario since quantization is con-

ducted once-for-all without the characteristics of continuous

evolution for regression. Hence, we do not consider it in our

study.

3) Compared Approaches: Since our work targets the prob-

lem of detecting regression faults, we selected the compared

approaches according to three criteria: 1) The approach has

been officially published; 2) The approach was proposed

or evaluated to detect differences between two versions of

models, e.g., a DL model and its quantized version; 3) The

approach has been open-sourced. Based on the first two

criteria, we identified DiffChaser [13], DeepEvolution [47],

DeepHunter [11], and Tensorfuzz [48] as candidates. However,

DeepEvolution is not open-sourced, and Tensorfuzz has been

demonstrated to underperform DeepHunter [11], and thus we

finally selected DiffChaser and DeepHunter as the compared

approaches.

TABLE III
OVERALL EFFECTIVENESS OF DRFUZZ.

Approach
Average Improvement (%)

#RFI #RF #Seed #GF #RFI #RF #Seed #GF

DiffChaser 19,750 1,235 911 27,391 204 1,177 638 722
DeepHunter 4,830 2,468 1,601 25,367 1,130 539 320 787
DRFuzz 59,420 15,763 6,725 225,098 - - - -

* Columns 2-5 present the number of averages results on all the subject on each
metric, and Columns 6-9 present the average improvement of DRFuzz over each
compared approach on each metric.

DiffChaser [13] is a search-based testing framework aiming

to find disagreements in the predictions between a DL model

and its quantized version. Following the configurations of

DiffChaser, we select the fitness function to find inputs close

to the boundaries of the top two classes to facilitate finding

disagreements in our experimentation. DeepHunter [11] is

a fuzzing framework for a DL model guided by structural

coverage [49], such as neuron coverage. It is initially designed

for fuzzing a specific version of the model, but it has also

been evaluated to find disagreements between a DL model and

its quantized version. We use KMNC (K-Multisection Neuron

Coverage) [50] with k = 1,000 following the configuration in

DeepHunter.

4) Measurements: To measure the effectiveness of a regres-

sion fuzzing approach, we adopt the number of regression-
fault-triggering test inputs (denoted as #RFI) and the number
of regression faults detected by fault-triggering test inputs
(denoted as #RF), similar to the existing work [11], [13],

[16]. As defined in Section III-A, RF refers to the number

of [initial seed, faulty behavior] tuples corresponding to the

regression-fault-triggering test inputs. Following the existing

work [11], [51], we also measure the number of initial seeds
for fault-triggering test inputs (denoted as #Seed) as another

effectiveness metric.

Indeed, detecting regression faults is the core goal of

a regression fuzzing approach, but the compared approach,

DeepHunter, is proposed for fuzzing one version. Hence, it is

also interesting to compare them in terms of the number of
detected general faults (denoted as #GF) during the fuzzing

process. Specifically, a detected general fault refers to a fault

in the current version of a model, regardless of triggering a

fault in the prior version or not.

Please note that in our study, we ran each approach on each

subject in each scenario for 24 hours and then measured the

effectiveness of each approach in terms of the above metrics.

The same testing period can ensure a fair comparison among

those approaches.

5) Implementations and Experiments: We implement DR-

Fuzz on Keras 2.3.1 and Tensorflow 1.15.0 and adopt the

existing implementations of compared approaches released in

their work [11], [13]. Regarding mutation rules, we follow the

configurations proposed in their original work [11], [27]. For

pixel level mutation, we select a small portion of pixels, i.e.,

0.5% of the total number of pixels, to mutate and patch size of

2×2 to preserve the semantic. Also, for the seed probability

update process, we set Pinit to be 1 and Pfinish to be 0.05,

88

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
EFFECTIVENESS ON DIFFERENT REGRESSION SCENARIOS

Regression Scenario Approach #RFI #RF #Seed #GF

SUPPLY
DiffChaser 12,489 991 846 18,529
DeepHunter 3,450 1,832 1,402 26,854
DRFuzz 43,265 13,391 6,272 207,917

ADV
DiffChaser 7,543 514 417 15,366
DeepHunter 4,319 2,196 1,422 25,290
DRFuzz 45,620 13,545 6,198 252,035

FIXING
DiffChaser 14,066 1,172 859 20,036
DeepHunter 3,850 2,362 1,608 19,202
DRFuzz 76,555 19,359 7,267 228,039

PRUNE
DiffChaser 56,211 2,983 2,015 67,656
DeepHunter 8,210 3,752 2,152 30,200
DRFuzz 86,040 18,975 7,690 185,464

max_times to be 10, w1 to be 1 and w2 to be 0.5. Besides,

for each fuzzing iteration, we set the number of test case

generation Batch_Size to be 10 according to the preliminary

study on a small dataset, and observe that the above settings

are generally effective.

We conduct our experiment on a machine with Intel (R)

Xeon (R) CPU E5-2640 v4, 40 cores, 2.40 GHz, 125Gb RAM,

and running on Ubuntu 18.04. The code and extra experimental

results will be found on the project homepage: https://github.

com/youhanmo/DRFuzz.

B. Experiment Results

1) Effectiveness of DRFuzz: Overall Effectiveness: The

overall effectiveness results of DRFuzz are presented in Ta-

ble III. Due to the limited space and large amounts of subjects

used in the study, we put detailed results on each subject on

our project homepage. From Table III we can observe that

DRFuzz performs the best on average across all subjects and

scenarios in terms of all metrics, with significant superiority

over DiffChaser and DeepHunter. The average number of RFI

and RF detected by DRFuzz outperforms DiffChaser with

an average improvement of 204% and 1,177%, respectively,

and outperforms DeepHunter with an average improvement

of 1,130% and 539%, respectively. Moreover, considering

the number of initial seeds for fault-triggering inputs (Seed)

explored by each approach, DRFuzz covers 6,725 initial

seeds, while DiffChaser and DeepHunter only cover 911 and

1,601 initial seeds, respectively. DRFuzz achieves an average

improvement on covered initial seeds by 638% and 320%

compared with them. The results demonstrate the effectiveness

of DRFuzz. Please note that DeepHunter is designed to detect

fault-triggering inputs in the current version (i.e., GF), but

DRFuzz still outperforms DeepHunter with an improvement

of 787%. The possible reason lies in that DeepHunter utilizes

neuron coverage to guide the fuzzing process, but the existing

studies have demonstrated neuron coverage is not strongly

correlated with fault detection capability [52]–[54]. However,

DRFuzz utilizes the prediction results to guide fault detection,

which is more explicit and straightforward for fault detection.

Effectiveness on Different Scenarios Table IV shows the

effectiveness of DRFuzz on different regression scenarios.

C
at

eg
or

ie
s o

n
R

eg
re

ss
io

n
M

od
el

Number of RF Detected

(a) MNIST-SUPPLY (categorized by
class)

Number of RF Detected

(b) MNIST-SUPPLY (categorized by
behavior)

C
at

eg
or

ie
s o

n
R

eg
re

ss
io

n
M

od
el 3

0
2
6
9
4
8
5
1
7

Number of RF Detected
0 1,000 2,000 3,000 4,000

(c) CIFAR10-SUPPLY (categorized
by class)

Number of RF Detected

(d) CIFAR10-SUPPLY (categorized
by behavior)

Fig. 3. Per Class/Behavior #RF of DRFuzz.

We can observe that DRFuzz outperforms the compared ap-

proaches stably on all the regression scenarios in terms of

various metrics. In particular, the regression faults triggered

(#RF) by DRFuzz have a 1,468.6% improvement over Dif-

fChaser and a 568.3% improvement over DeepHunter, across

all the scenarios. The improvements on explored initial seeds

(#Seed) are 763.8% and 323.1%, respectively. The results

further demonstrate the stable effectiveness of DRFuzz in

various regression scenarios.

Regression Explication based on DRFuzz We further focus

on utilizing regression faults (#RF) to explain the bias and

risks induced in the regression process. For clarity of illustra-

tion, we select and report the results on subjects of MNIST-

LeNet5 (Figure 3(a) and Figure 3(b)) and CIFAR10-VGG16

(Figure 3(c) and Figure 3(d)) on the supplementary training

scenario. From Figure 3(a), we can observe that Classes 7,

8, and 4 contain the most regression faults, which means that

the regression process may induce overfitting in these classes.

Figure 3(b) shows that inputs of class 1 are wrongly predicted

as class 8, inputs of class 9 are wrongly predicted as class 4,

and inputs of classes 1, 2, and 9 tend to be predicted as 7 due

to the regression process.

The results of CIFAR10-VGG16 on the supplementary

training scenario (Figure 3(c) and Figure 3(d)) show a similar

trend, where class 3 (cat), 0 (airplane), and 2 (automobile)

are the top-3 classes showing regression faults. Figure 3(d)

shows that class 8 (ship) is likely to be wrongly predicted as 0

(airplane), and animal-related classes such as 5 (dog), 6 (frog),

and 2 (bird) are easily misclassified as 3 (cat). The prediction

results and the faulty behaviors facilitate explaining the bias

(such as overfitting) in each class to judge if the regression

process contributes to data relevance.

The effectiveness results show that DRFuzz outperforms

89

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

the state-of-the-art approaches consistently across different

datasets, model structures, and regression scenarios. The re-

sults produced by DRFuzz facilitate explaining the regression

behaviors, assisting DL developers to better understand the

risks and bias induced through regression.

2) Contribution of the main component of DRFuzz: DR-

Fuzz comprises three major components, i.e., mutation, GAN-

based fidelity assurance, and seed maintenance. Therefore,

we conduct ablation experiments to measure the contribution

of each component. In particular, we selected four subject-

scenario pairs, i.e., MNIST-SUPPLY, CIFAR10-ADV:CW,

FM-FIXING, and SVHN-PRUNE, which considers represen-

tative dataset-model pairs and regression scenarios combina-

tions. We compare DRFuzz with three variants of DRFuzz,

i.e., DRFuzz_r, DRFuzz_NG, and DRFuzz_NSM, represent-

ing DRFuzz with the random mutation rule selection strategy

(which replaces the MCMC-guided mutation rule selection

strategy), DRFuzz without GAN-based fidelity assurance, and

DRFuzz without seed maintenance technique. We ran DRFuzz

and each variant for 24 hours to calculate the results.

As shown in Table V, DRFuzz_r detects 24.3% and 13.1%

fewer RFIs and RFs compared with DRFuzz. The results

demonstrate that DRFuzz can generate more diverse regression

faults than DRFuzz_r across all the used subjects. The reason

is that DRFuzz_r can not guide amplifying the confidence

difference in prediction results and thus ignores the test inputs

that have the potential to become regression faults. The results

confirm the contribution of the MCMC-guided mutation rule

selection strategy. DRFuzz_NSM detects 47.3% and 56.8%

fewer RFIs and RFs compared with DRFuzz. The results show

that the Seed Maintenance technique effectively contributes to

detecting more regression faults. DRFuzz_NG can detect an

average of 18.5% and 27.8% more RFIs and RFs compared

with DRFuzz. Recall that we propose the GAN-based Fidelity

Assurance technique to filter out inputs with low fidelity,

which are out-of-scope but can trigger regression faults. We

further manually evaluate the fidelity of inputs obtained with

and without the fidelity assurance mechanism. Specifically, we

sample 100 inputs generated by DRFuzz_NG and DRFuzz,

respectively, and two authors manually evaluate their fidelity

individually. The Cohen’s Kappa coefficient between their

evaluation is 0.67. They label 86% of inputs generated by

DRFuzz as high-fidelity and only 57.5% of inputs generated

by DRFuzz_NG as high-fidelity. This indicates that the GAN-

based Fidelity Assurance technique can filter out more than

20% of fault-triggering inputs with low fidelity. We find

that the low-fidelity inputs generated by DRFuzz_NG can

be categorized into three categories, i.e., blurry inputs, noisy

inputs, and over-changed inputs (presented in Figure 4). That

is, DRFuzz drops some fault-triggering inputs compared with

DRFuzz_NG to achieve a balance between fault detection

effectiveness and input fidelity.

3) Model Quality Improvement based on DRFuzz: In RQ3,

we investigate the value of the regression faults detected

by DRFuzz in improving model quality. That is, we try

to fix the regression faults induced through regression by

TABLE V
ABLATION EXPERIMENT RESULTS

#RFI #RF #seed #GF

DRFuzz 70,093 16,464 6,942 231,675
DRFuzz_r 53,037 14,309 6,523 185,354
DRFuzz_NG 83,042 21,044 7,748 279,544
DRFuzz_NSM 36,936 7,109 3,239 136,723

(a) Blurry (b) Noisy (c) Over-changed

Fig. 4. Inputs generated by DRFuzz (on the left of each figure) and
DRFuzz_NG (on the right of each figure)

fine-tuning the current regression model M2 to obtain an

improved model M′
2. Please note that, like regression testing

in traditional software, we only consider fixing the regression

faults induced from the original model (i.e.,M1) to the current

regression model (i.e., M2). Following experimental settings

in the existing work [55], [56], to avoid data leakage, we

randomly split test inputs into two parts following the ratio

of 1:9, then we fine-tune the M2 model with regression-

fault-triggering inputs generated from 10% seeds on one

approach for ten epochs and evaluate its effectiveness on

regression-fault-triggering inputs generated from 90% seeds

by all compared approaches. During fine-tuning, we ensure

the accuracy of models should not decline intensively and

evaluate whether M′
2 can fix regression faults triggered by

inputs generated by each approach.

Table VI shows the results of quality improvement

on different regression scenarios. Overall, fine-tuning on

regression-fault-triggering inputs generated by DRFuzz can

fix 77.72%∼87.03% of regression faults generated by DR-

Fuzz, 52.26%∼80.68% by DiffChaser and 66.63%∼79.88%

by DeepHunter. Fine-tuning on DeepHunter can only fix

53.99%∼64.12% of regression faults generated by DRFuzz,

and 55.13%∼71.84% by DiffChaser. Fine-tuning on Dif-

fchaser can only fix 48.52%∼58.84% of regression faults

generated by DRFuzz, and 49.62%∼60.39% by DeepHunter.

Besides, the largest decrement in the accuracy of the regression

model by fine-tuning on DRFuzz is just 0.12%, while those

by fine-tuning on DiffChaser and DeepHunter are 2.30% and

1.38%, respectively. That further demonstrates the stable value

of DRFuzz in fixing regression faults. Overall, the regression

faults detected by DRFuzz can effectively fix the regression

faults induced in the regression model on different scenarios

with the training accuracy preserved.

In addition, fine-tuning on regression faults generated by

DRFuzz can not only fix regression faults generated by DR-

Fuzz (i.e., fixing an average of 82.90% of regression faults

generated by DRFuzz) but also fix most of the regression faults

generated by compared approaches. Fine-tuning on DRFuzz

does not outperform DiffChaser and DeepHunter in some

90

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
RETRAINING ACCURACY ON DIFFERENT REGRESSION SCENARIOS

Scenario Train\Test DiffChaser DeepHunter DRFuzz ⇑Acc(%)

SUPPLY
DiffChaser 67.11% 49.62% 53.35% -0.97%
DeepHunter 61.97% 72.83% 60.13% -0.06%
DRFuzz 73.25% 74.09% 84.98% 0.34%

ADV:CW
DiffChaser 72.96% 60.39% 58.84% 0.39%
DeepHunter 71.84% 75.25% 64.12% 0.66%
DRFuzz 80.68% 79.88% 87.03% 0.81%

ADV:BIM
DiffChaser 77.47% 50.39% 55.70% -0.25%
DeepHunter 64.13% 68.43% 58.50% 0.04%
DRFuzz 76.87% 67.64% 83.23% -0.04%

FIXING
DiffChaser 64.25% 50.70% 48.52% -2.30%
DeepHunter 55.13% 65.02% 53.99% -1.38%
DRFuzz 52.26% 66.63% 77.72% -0.12%

PRUNE
DiffChaser 75.61% 55.55% 53.46% 3.66%
DeepHunter 63.84% 76.10% 59.74% 3.95%
DRFuzz 74.35% 70.37% 81.53% 4.04%

* ⇑Acc shows the average Accuracy improvement from the regression model to the
model fine-tuned by regression fault-triggering inputs.

cases where the training set and test set for the fine-tuning

process are generated by the same technique. This is because

such training and test data are more similar, thus making

the used technique perform better. The overall results further

demonstrate that regression faults generated by DRFuzz are

more diverse and can subsume a large portion of regression

faults generated by compared approaches.

V. DISCUSSION

A. Generality of DRFuzz

Our study has demonstrated the effectiveness of DRFuzz in

the image domain. Howbeit, DRFuzz can actually be applied

to more domains (e.g., text, volume) since the three main

components of DRFuzz are all extendable. The mutation

process of DRFuzz can be extended to a new domain as long

as the mutation rules of a new domain are well-designed. As

presented in Section III-C, designing mutation rules shares

the same high-level idea, i.e., slightly changing the input data

using widely-used mutation operators for generating adver-

sarial examples in the corresponding domains. It is easy to

extend DRFuzz to a new domain since we can easily find

adversarial attack methods for the corresponding domain (e.g.,

Word replacement Attack for the text domain [57], Noise

Attack for the audio domain [58]). The GAN-based Fidelity

Assurance technique, which requires training a Discriminator

using the training set to evaluate the fidelity of test inputs, can

also be extended to more domains since it is easy to acquire

the training set and widely-used GAN structures suitable for

the domain [59], [60]. Besides, the seed maintenance strategies

are also adaptable as they are not related to the input format.

Therefore, our approach can be applied to domains other than

image classification models.

B. Diversity Analysis

To further analyze the diversity of regression-fault-

triggering test inputs generated by DRFuzz, we sample a por-

tion from the inputs generated by DRFuzz and conduct manual

(a) (1->8)(1) (b) (1->8)(2) (c) (1->9)(1) (d) (1->9)(2)

Fig. 5. An example from MNIST:SUPPLY for Qualitative Analysis

analysis to check if the diversity measurement used in DRFuzz

(defined in Section III-A) actually facilitates triggering diverse

faulty behaviors. To assist the visual analysis, we use the

Gradient-weighted Class Activation Map (heatmap) [61] to

visualize the importance of each feature in the prediction

process. Figure 5 presents heatmaps of four regression faults

mutated from the same initial seed (with ground truth label 1)

and are recognized as 8 and 9, respectively, by the regression

model. The important features of Figure 5(a) and Figure 5(b)

for faulty behavior (1 → 8) lie in the center of the images.

The important features of Figure 5(c) and Figure 5(d) for

faulty behavior (1 → 9) lie on the left of the images. The

phenomena above show that different faulty behaviors may be

caused by different features, further indicating that diversity

criteria based on faulty behaviors (proposed in Section III-A)

can reflect the diversity of fault-triggering test inputs to some

extent.

C. Threats to Validity

Internal Threats to Validity lie in the implementation of

DRFuzz, the compared approaches, and the experiment scripts.

To mitigate the threats, we adopt widely-used libraries to

implement DRFuzz and carefully check the code and ex-

perimental scripts. For compared approaches, we use the

implementation released by authors and carefully follow their

parameter settings.

External Threats to Validity lie in the subjects studied in the

evaluation. To reduce the threat of subject selection, we select

plenty of models, datasets, and various regression scenarios

in our evaluation. Although we mainly focus on classification

tasks, we provide detailed analysis in Section V-A to prove

that DRFuzz can be easily generalized to other tasks, e.g.,

regression and recommendation.

Construct Threats to Validity lies in the measurement used

in our study and randomness incurred in experiments. We

follow the existing work [11] to measure the diversity of

seeds and extend the diversity metric to regression faults

(section III-A). For the randomness that may incur, we conduct

a preliminary study on MNIST-LeNet5, where we repeat the

experiment four times, and the Coefficient of variation in

terms of each metric (i.e., #RFI, #RF, #Seed, and #GF) range

from 0.31%∼0.67% for DiffChaser, 2.19%∼9.65% for Dee-

pHunter and 3.78%∼4.84% for DRFuzz. All the Coefficient

of variation in terms of each metric is lower than 10%, which

proves the stability of each approach. Moreover, we run the

experiment on each configuration setting for 24 hours, which

is sufficiently long to eliminate the effect of randomness.

91

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

VI. RELATED WORK

A. Deep Learning Testing
The statistical nature of deep learning systems makes it

hard to be sufficiently tested [62], [63]. Testing for DL

systems has been explored from code [64], [65], model [49],

[50], [66]–[68], and library [69], [70] perspectives. Nowadays,

many researchers have been working on proposing testing

frameworks to expose the vulnerabilities of deep learning

systems. Guo et al. [71] proposed DLFuzz, which considers

confidence changing and neuron coverage to guide the fuzzing

process. Wang et al. [72] proposed RobOT, which automati-

cally generates test cases to improve model robustness. Sun et

al. [73] proposed DeepConcolic, leveraging the execution of

concrete inputs and symbolic analysis to synthesize new test

inputs. Ma et al. [74] proposed a mutation-based framework

DeepMutation, which mutates the model from the source-code

level and the model level to further explore the weakness in the

model. Ma et al. [75] proposed DeepCT based on the insight

of combinatorial testing to build an LP-constraint-solving-

based test generator. Du et al. proposed DeepCruiser [76]

and DeepStellar [77], which model RNN as Markov Decision

Process to generate semantic-preserved test cases. These works

were designed and evaluated specifically for a single version of

a model, while DRFuzz considers the difference between the

original model and regression models to facilitate generating

regression-fault-triggering test inputs.

B. Regression Fuzzing
Fuzzing is a technique for detecting bugs through auto-

matically generated test inputs. Fuzzing is widely used to

test a variety of different programs, such as JVM [78], [79],

compilers [80], [81] and smart contracts [82]. For traditional

software, fuzzing is used to generate inputs that can trigger

unexpected behaviors. The fuzzing process is usually guided

using structural coverage to measure the exploration of pro-

grams. The insights of fuzzing traditional software are also

inherited to test deep learning systems, which include fuzzing

for DNNs [11], [12], deep learning libraries [83] and deep

learning compilers [80]. Fuzzing is proved to be effective for

input generation and defect localization.
Regression testing ensures that changes made through

software evolution do not impact the previously working

functionality [5]. It usually involves optimization techniques

such as test case prioritization [6], [84], selection [85], and

reduction [86] to reduce the cost, effort, and time taken to

perform regression testing. Different from the above works,

regression fuzzing focuses on fuzzing on the changes in soft-

ware systems and amplifying the impact of changes to detect

regression bugs induced through each regression process [87].

Multiple regression fuzzing approaches on traditional software

have been proposed to boost the effectiveness and efficiency

of fuzzing, such as differential analysis [88] and symbolic

execution [89]. DRFuzz proposes a novel approach to tackle

the problem of regression fuzzing of deep learning systems

and conduct large-scale experiments with diverse regression

scenarios and test subjects.

VII. CONCLUSION

In this work, we propose a regression fuzzing technique,

DRFuzz, to generate regression-fault-triggering inputs with

high fidelity and diversity. It adopts the MCMC strategy

to select mutation rules that are prone to generating fault-

triggering test inputs and proposes a GAN-based fidelity

assurance method to ensure the fidelity of the generated inputs.

Also, DRFuzz incorporates tree-based seed pool trimming

and seed probability update to maintain the quality of the

seed pool and thus increase the diversity of the generated

regression faults. We compared DRFuzz with two state-of-the-

art approaches to four subjects in four regression scenarios,

and the results show that DRFuzz outperforms the com-

pared approaches across all regression scenarios. Moreover,

fine-tuning on regression-fault-triggering inputs generated by

DRFuzz can fix more regression faults than fine-tuning on

compared approaches, which proves that regression faults

triggered by inputs generated by DRFuzz can be used to

improve the quality of the models effectively. In our future

work, we will focus on investigating the influence of both in-

distribution and out-of-distribution regression-fault-triggering

test inputs generation and further exploring approaches to fix

regression faults without inducing new regression faults.

ACKNOWLEDGMENT

This work is partially supported by the National Natural

Science Foundation of China Nos. 61872263, 62232001, and

62002256.

REFERENCES

[1] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in ASE. ACM, 2018, pp. 132–142.

[2] Y. Zhang, J. M. Górriz, and Z. Dong, “Deep learning in medical image
analysis,” J. Imaging, vol. 7, no. 4, p. 74, 2021.

[3] G. Hu, Y. Yang, D. Yi, J. Kittler, W. J. Christmas, S. Z. Li, and
T. M. Hospedales, “When face recognition meets with deep learning:
An evaluation of convolutional neural networks for face recognition,” in
ICCV Workshops. IEEE Computer Society, 2015, pp. 384–392.

[4] M. Böhme and A. Roychoudhury, “Corebench: studying complexity of
regression errors,” in ISSTA. ACM, 2014, pp. 105–115.

[5] Y. Lou, J. Chen, L. Zhang, and D. Hao, “Chapter one - A survey on
regression test-case prioritization,” Adv. Comput., vol. 113, pp. 1–46,
2019.

[6] Z. Chen, J. Chen, W. Wang, J. Zhou, M. Wang, X. Chen, S. Zhou,
and J. Wang, “Exploring better black-box test case prioritization via log
analysis,” ACM Trans. Softw. Eng. Methodol., 2022.

[7] J. Krol, “News,” Accessed: 2022. [Online].
Available: https://www.cnn.com/2021/04/27/cnn-underscored/
ios-14-5-iphone-update-face-id-mask-apple/index.html

[8] J. Torres, “News,” Accessed: 2022. [On-
line]. Available: https://www.slashgear.com/
galaxy-s10-5g-update-reportedly-breaks-face-recognition-26684006/

[9] S. Ma, Y. Liu, W. Lee, X. Zhang, and A. Grama, “MODE: automated
neural network model debugging via state differential analysis and input
selection,” in ESEC/SIGSOFT FSE. ACM, 2018, pp. 175–186.

[10] M. Wen, R. Wu, and S. Cheung, “Locus: locating bugs from software
changes,” in ASE. ACM, 2016, pp. 262–273.

[11] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in ISSTA. ACM, 2019, pp. 146–
157.

92

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

[12] S. Demir, H. F. Eniser, and A. Sen, “Deepsmartfuzzer: Reward guided
test generation for deep learning,” in AISafety@IJCAI, ser. CEUR
Workshop Proceedings, vol. 2640. CEUR-WS.org, 2020.

[13] X. Xie, L. Ma, H. Wang, Y. Li, Y. Liu, and X. Li, “Diffchaser: Detecting
disagreements for deep neural networks,” in IJCAI. ijcai.org, 2019, pp.
5772–5778.

[14] A. M. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
in CVPR. IEEE Computer Society, 2015, pp. 427–436.

[15] D. Jakubovitz and R. Giryes, “Improving DNN robustness to adversarial
attacks using jacobian regularization,” in ECCV (12), ser. Lecture Notes
in Computer Science, vol. 11216. Springer, 2018, pp. 525–541.

[16] X. Gao, Y. Feng, Y. Yin, Z. Liu, Z. Chen, and B. Xu, “Adaptive test
selection for deep neural networks,” in ICSE. ACM, 2022, pp. 73–85.

[17] J. Chen, Z. Wu, Z. Wang, H. You, L. Zhang, and M. Yan, “Practical
accuracy estimation for efficient deep neural network testing,” ACM
Trans. Softw. Eng. Methodol., vol. 29, no. 4, pp. 30:1–30:35, 2020.

[18] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning library
testing via effective model generation,” in ESEC/SIGSOFT FSE. ACM,
2020, pp. 788–799.

[19] V. Riccio and P. Tonella, “Model-based exploration of the frontier of
behaviours for deep learning system testing,” in ESEC/SIGSOFT FSE.
ACM, 2020, pp. 876–888.

[20] S. Dola, M. B. Dwyer, and M. L. Soffa, “Distribution-aware testing of
neural networks using generative models,” in ICSE. IEEE, 2021, pp.
226–237.

[21] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.

[22] K. Elmore and M. Richman, “Euclidean distance as a similarity metric
for principal component analysis,” Monthly Weather Review - MON
WEATHER REV, vol. 129, 03 2001.

[23] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
ICLR (Poster), 2016.

[24] W. Fang, F. Zhang, V. S. Sheng, and Y. Ding, “A method for improving
cnn-based image recognition using dcgan,” Computers, Materials and
Continua, vol. 57, no. 1, pp. 167–178, 2018.

[25] H. Yin, Y. Wei, H. Liu, S. Liu, C. Liu, and Y. Gao, “Deep convolutional
generative adversarial network and convolutional neural network for
smoke detection,” Complex., vol. 2020, pp. 6 843 869:1–6 843 869:12,
2020.

[26] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. L. Traon, “Validity
fuzzing and parametric generators for effective random testing,” in ICSE
(Companion Volume). IEEE / ACM, 2019, pp. 266–267.

[27] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: automated testing of
deep-neural-network-driven autonomous cars,” in ICSE. ACM, 2018,
pp. 303–314.

[28] S. B. Tambe, D. Kulhare, M. Nirmal, and G. Prajapati, “Image process-
ing (ip) through erosion and dilation methods,” 2013.

[29] C. J. Geyer, “Practical markov chain monte carlo,” Statistical science,
pp. 473–483, 1992.

[30] R. E. Kass, B. P. Carlin, A. Gelman, and R. M. Neal, “Markov
chain monte carlo in practice: a roundtable discussion,” The American
Statistician, vol. 52, no. 2, pp. 93–100, 1998.

[31] S. Chib and E. Greenberg, “Understanding the metropolis-hastings
algorithm,” The american statistician, vol. 49, no. 4, pp. 327–335, 1995.

[32] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of JVM implementations,” in PLDI. ACM, 2016,
pp. 85–99.

[33] Z. Wang, H. You, J. Chen, Y. Zhang, X. Dong, and W. Zhang,
“Prioritizing test inputs for deep neural networks via mutation analysis,”
in ICSE. IEEE, 2021, pp. 397–409.

[34] W. Ma, M. Papadakis, A. Tsakmalis, M. Cordy, and Y. L. Traon, “Test
selection for deep learning systems,” ACM Trans. Softw. Eng. Methodol.,
vol. 30, no. 2, pp. 13:1–13:22, 2021.

[35] Q. Hu, Y. Guo, M. Cordy, X. Xie, L. Ma, M. Papadakis, and Y. L.
Traon, “An empirical study on data distribution-aware test selection for
deep learning enhancement,” ACM Trans. Softw. Eng. Methodol., vol. 31,
no. 4, pp. 78:1–78:30, 2022.

[36] Y. Zhang, Z. Wang, J. Jiang, H. You, and J. Chen, “Toward improving
the robustness of deep learning models via model transformation,” in
ASE. ACM, 2022, pp. 104:1–104:13.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[38] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

[39] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[40] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading
digits in natural images with unsupervised feature learning,” NIPS, 01
2011.

[41] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in ICLR (Workshop). OpenReview.net, 2017.

[42] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” in IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2017, pp. 39–57.

[43] H. Zhang and W. K. Chan, “Apricot: A weight-adaptation approach to
fixing deep learning models,” in ASE. IEEE, 2019, pp. 376–387.

[44] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in ICCV.
IEEE Computer Society, 2017, pp. 2755–2763.

[45] “Tensorflow model optimization toolkit,” https://github.com/tensorflow/
model-optimization, Accessed:2022.

[46] B. Whetton and SvenWarnke., “keras-surgeon,” https://github.com/
BenWhetton/keras-surgeon, 2017.

[47] H. B. Braiek and F. Khomh, “Deepevolution: A search-based testing
approach for deep neural networks,” in ICSME. IEEE, 2019, pp. 454–
458.

[48] A. Odena, C. Olsson, D. G. Andersen, and I. J. Goodfellow, “Tensorfuzz:
Debugging neural networks with coverage-guided fuzzing,” in ICML,
ser. Proceedings of Machine Learning Research, vol. 97. PMLR, 2019,
pp. 4901–4911.

[49] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in SOSP. ACM, 2017, pp. 1–18.

[50] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su,
L. Li, Y. Liu, J. Zhao, and Y. Wang, “Deepgauge: multi-granularity
testing criteria for deep learning systems,” in ASE. ACM, 2018, pp.
120–131.

[51] Q. Shen, J. Chen, J. M. Zhang, H. Wang, S. Liu, and M. Tian, “Natural
test generation for precise testing of question answering software,” in
ASE. ACM, 2022, pp. 71:1–71:12.

[52] Z. Li, X. Ma, C. Xu, and C. Cao, “Structural coverage criteria for neural
networks could be misleading,” in ICSE (NIER). IEEE / ACM, 2019,
pp. 89–92.

[53] F. Harel-Canada, L. Wang, M. A. Gulzar, Q. Gu, and M. Kim, “Is neuron
coverage a meaningful measure for testing deep neural networks?” in
ESEC/SIGSOFT FSE. ACM, 2020, pp. 851–862.

[54] Y. Dong, P. Zhang, J. Wang, S. Liu, J. Sun, J. Hao, X. Wang, L. Wang,
J. S. Dong, and D. Ting, “There is limited correlation between coverage
and robustness for deep neural networks,” CoRR, vol. abs/1911.05904,
2019.

[55] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S. Dong,
and T. Dai, “White-box fairness testing through adversarial sampling,”
in ICSE. ACM, 2020, pp. 949–960.

[56] P. Zhang, J. Wang, J. Sun, X. Wang, G. Dong, X. Wang, T. Dai, and
J. S. Dong, “Automatic fairness testing of neural classifiers through
adversarial sampling,” IEEE Trans. Software Eng., vol. 48, no. 9, pp.
3593–3612, 2022.

[57] Z. Sun, J. M. Zhang, M. Harman, M. Papadakis, and L. Zhang,
“Automatic testing and improvement of machine translation,” in ICSE.
ACM, 2020, pp. 974–985.

[58] R. Taori, A. Kamsetty, B. Chu, and N. Vemuri, “Targeted adversarial
examples for black box audio systems,” in IEEE Symposium on Security
and Privacy Workshops. IEEE, 2019, pp. 15–20.

[59] M. Cha, Y. Gwon, and H. T. Kung, “Adversarial nets with perceptual
losses for text-to-image synthesis,” in MLSP. IEEE, 2017, pp. 1–6.

[60] J. B. Harvill, D. Issa, M. Hasegawa-Johnson, and C. D. Yoo, “Syn-
thesis of new words for improved dysarthric speech recognition on an
expanded vocabulary,” in ICASSP. IEEE, 2021, pp. 6428–6432.

[61] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in ICCV. IEEE Computer Society, 2017,
pp. 618–626.

[62] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” IEEE Trans. Software Eng., vol. 48,
no. 2, pp. 1–36, 2022.

93

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

[63] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, and
P. Tonella, “Testing machine learning based systems: a systematic
mapping,” Empir. Softw. Eng., vol. 25, no. 6, pp. 5193–5254, 2020.

[64] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and
P. Tonella, “Taxonomy of real faults in deep learning systems,” in ICSE.
ACM, 2020, pp. 1110–1121.

[65] M. Wardat, W. Le, and H. Rajan, “Deeplocalize: Fault localization for
deep neural networks,” in ICSE. IEEE, 2021, pp. 251–262.

[66] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019. IEEE / ACM, 2019,
pp. 1039–1049.

[67] H. Converse, A. Filieri, D. Gopinath, and C. S. Pasareanu, “Probabilistic
symbolic analysis of neural networks,” in ISSRE. IEEE, 2020, pp. 148–
159.

[68] S. Kang, R. Feldt, and S. Yoo, “SINVAD: search-based image space
navigation for DNN image classifier test input generation,” in ICSE
(Workshops). ACM, 2020, pp. 521–528.

[69] M. Yan, J. Chen, X. Zhang, L. Tan, G. Wang, and Z. Wang, “Exposing
numerical bugs in deep learning via gradient back-propagation,” in
ESEC/SIGSOFT FSE. ACM, 2021, pp. 627–638.

[70] X. Zhang, N. Sun, C. Fang, J. Liu, J. Liu, D. Chai, J. Wang, and Z. Chen,
“Predoo: precision testing of deep learning operators,” in ISSTA. ACM,
2021, pp. 400–412.

[71] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: differential
fuzzing testing of deep learning systems,” in ESEC/SIGSOFT FSE.
ACM, 2018, pp. 739–743.

[72] J. Wang, J. Chen, Y. Sun, X. Ma, D. Wang, J. Sun, and P. Cheng, “Robot:
Robustness-oriented testing for deep learning systems,” in ICSE. IEEE,
2021, pp. 300–311.

[73] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore,
“Deepconcolic: testing and debugging deep neural networks,” in ICSE
(Companion Volume). IEEE / ACM, 2019, pp. 111–114.

[74] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang, “Deepmutation: Mutation testing of deep
learning systems,” in ISSRE. IEEE Computer Society, 2018, pp. 100–
111.

[75] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao,
“Deepct: Tomographic combinatorial testing for deep learning systems,”
in SANER. IEEE, 2019, pp. 614–618.

[76] X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstellar:
model-based quantitative analysis of stateful deep learning systems,”
in ESEC/SIGSOFT FSE. ACM, 2019, pp. 477–487.

[77] X. Du, X. Xie, Y. Li, L. Ma, J. Zhao, and Y. Liu, “Deepcruiser:
Automated guided testing for stateful deep learning systems,” CoRR,
vol. abs/1812.05339, 2018.

[78] W. Bonnaventure, A. Khanfir, A. Bartel, M. Papadakis, and Y. L.
Traon, “Confuzzion: A java virtual machine fuzzer for type confusion
vulnerabilities,” in QRS. IEEE, 2021, pp. 586–597.

[79] Y. Zhao, Z. Wang, J. Chen, M. Liu, M. Wu, Y. Zhang, and L. Zhang,
“History-driven test program synthesis for JVM testing,” in ICSE.
ACM, 2022, pp. 1133–1144.

[80] Q. Shen, H. Ma, J. Chen, Y. Tian, S. Cheung, and X. Chen, “A com-
prehensive study of deep learning compiler bugs,” in ESEC/SIGSOFT
FSE. ACM, 2021, pp. 968–980.

[81] J. Wang, Z. Zhang, S. Liu, X. Du, and J. Chen, “Fuzzjit: Oracle-
enhanced fuzzing for javascript engine jit compiler.”

[82] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: an
efficient adaptive fuzzer for solidity smart contracts,” in ICSE. ACM,
2020, pp. 778–788.

[83] X. Zhang, J. Liu, N. Sun, C. Fang, J. Liu, J. Wang, D. Chai, and Z. Chen,
“Duo: Differential fuzzing for deep learning operators,” IEEE Trans.
Reliab., vol. 70, no. 4, pp. 1671–1685, 2021.

[84] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie,
“Test case prioritization for compilers: A text-vector based approach,”
in ICST. IEEE Computer Society, 2016, pp. 266–277.

[85] A. Shi, M. Hadzi-Tanovic, L. Zhang, D. Marinov, and O. Legunsen,
“Reflection-aware static regression test selection,” Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, pp. 187:1–187:29, 2019.

[86] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, and B. Xie, “How do
assertions impact coverage-based test-suite reduction?” in ICST. IEEE
Computer Society, 2017, pp. 418–423.

[87] X. Zhu and M. Böhme, “Regression greybox fuzzing,” in CCS. ACM,
2021, pp. 2169–2182.

[88] Y. Noller, C. S. Pasareanu, M. Böhme, Y. Sun, H. L. Nguyen, and
L. Grunske, “Hydiff: hybrid differential software analysis,” in ICSE.
ACM, 2020, pp. 1273–1285.

[89] Y. Noller, “Differential program analysis with fuzzing and symbolic
execution,” in ASE. ACM, 2018, pp. 944–947.

94

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 29,2023 at 06:35:20 UTC from IEEE Xplore. Restrictions apply.

