This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE
Transactions on Software Engineering

Historical Spectrum based Fault Localization
Ming Wen, Junjie Chen, Yongqgiang Tian, Rongxin Wu, Dan Hao, Shi Han and Shing-Chi Cheung

Abstract—Spectrum-based fault localization (SBFL) techniques are widely studied and have been evaluated to be effective in locating
faults. Recent studies also showed that developers from industry value automated SBFL techniques. However, their effectiveness is still
limited by two main reasons. First, the test coverage information leveraged to construct the spectrum does not reflect the root cause

directly. Second, SBFL suffers from the tie issue so that the buggy code entities can not be well differentiated from non-buggy ones. To

address these challenges, we propose to leverage the information of version histories in fault localization based on the following two
intuitions. First, version histories record how bugs are introduced to software projects and this information reflects the root cause of
bugs directly. Second, the evolution histories of code can help differentiate those suspicious code entities ranked in tie by SBFL. Our
intuitions are also inspired by the observations on debugging practices from large open source projects and industry.

Based on the intuitions, we propose a novel technique HSFL (historical spectrum based fault localization). Specifically, HSFL identifies
bug-inducing commits from the version history in the first step. It then constructs historical spectrum (denoted as Histrum) based on
bug-inducing commits, which is another dimension of spectrum orthogonal to the coverage based spectrum used in SBFL. HSFL finally
ranks the suspicious code elements based on our proposed Histrum and the conventional spectrum. HSFL outperforms the
state-of-the-art SBFL techniques significantly on the Defects4J benchmark. Specifically, it locates and ranks the buggy statement at
Top-1 for 77.8% more bugs as compared with SBFL, and 33.9% more bugs at Top-5. Besides, for the metrics MAP and MRR, HSFL
achieves an average improvement of 28.3% and 40.8% over all bugs, respectively. Moreover, HSFL can also outperform other six
families of fault localization techniques, and our proposed Histrum model can be integrated with different families of techniques and

boost their performance.

Index Terms—Fault Localization, Version Histories, Bug-Inducing Commits

1 INTRODUCTION

Software debugging is time-consuming and labor-intensive.
According to a recent study [1], this process costs nearly
50% of developers’ time and efforts. To mitigate the prob-
lem, automated debugging attracts much attention, where
fault localization (FL) has been recognized as an important
step [2], [3], [4]. Xia et al. [5] recently conducted an empir-
ical study and found that FL can actually help developers
save debugging time in practice. Another recent study also
revealed that developers from industry value automated FL
techniques [6]. Specifically, more than 97% of the developers
consider it essential or worthwhile to leverage automated

e Ming Wen is with the School of Cyber Science and Engineering,
Huazhong University of Science and Technology, Wuhan, China. E-mail:
mwenaa@hust.edu.cn

o Yonggiang Tian and Shing-Chi Cheung are with the Department of
Computer Science and Engineering, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong, China. E-mail:
{ytianas, scc}@cse.ust.hk.

e Junjie Chen is with the College of Intelligence and Computing, Tianjin
University, Tianjin, China. E-mail: junjiechen@tju.edu.cn

e Rongxin Wu is with the Department of Cyber Space Security, Xiamen
University, Xiamen, China. E-mail: wurongxin@xmu.edu.cn

e Dan Hao is with the Key Laboratory of High Confidence Software
Technologies and Institute of Software, EECS, Peking University, Beijing,
China. E-mail: haodan@pku.edu.cn.

e Shi Han is with Microsoft Research Asia, Beijing, China. E-mail: shi-
han@microsoft.com

Manuscript received xxx, 2018; revised xxx, 2018.

FL techniques. Besides, FL techniques are essential for au-
tomated program repair (APR) techniques (e.g., [7], [8], [9],
[10]), which rely mostly on FL to generate a fault space at
statement granularity. The effectiveness of FL greatly affects
the performance of APR [7], [10]. Therefore, there are strong
demands for better FL to improve APR’s performance. As a
result, various recent efforts (e.g., [11], [12], [13]) have been
made to advance FL.

Spectrum-based fault localization (SBFL) is a major cat-
egory of FL techniques (e.g., [11], [12], [14], [15], [16]). It
constructs an coverage based spectrum by running the passing
and failing tests, and then uses the spectrum to compute
the suspicious score for each code entity (e.g., statement
or method). It assumes that the code entities covered by more
failing tests but fewer passing tests are more likely to be buggy.
Due to its effectiveness, SBFL has been used by developers
for debugging in practice [15], [17], [18].

Even though successes in locating faults by SBFL have
been demonstrated, the effectiveness of SBFL is still com-
promised due to two main reasons [19], [20], [21], [22]. First,
SBFL is based only on test coverage information. Although
test coverage has been leveraged to approximate a bug’s
root cause, it does not pinpoint the root cause of a bug
directly [19], [20]. Second, SBFL widely suffers from the tie
issue [21], [22]. One typical tie example is that the statements
in the same program block have the same suspicious score,
since they are equally covered by tests. In such cases, the
buggy code entities cannot be differentiated from the non-
buggy ones in the same program block.

We propose to overcome these limitations by taking a
novel perspective from project version histories. First, a
bug’s root cause can be directly reflected in the version

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

history. A bug was introduced into a software project by
either the initial code commit or subsequent code commits
when the software evolves [23]. In particular, the commit
introducing a bug is called a bug-inducing commit [23], [24],
and the associated bug-revealing tests start to fail after the
bug-inducing commit is adopted [25]. Intuitively, identify-
ing the bug-inducing commit will help locate the root cause
(i.e., those buggy statements). Second, the version histories
of code entities can help differentiate those suspicious code
entities, since different code entities (even in the same
block) could have different evolution histories (i.e., modified
by different commits). Therefore, it greatly increases the
chances to break the tie issue in SBFL.

Our intuition is also inspired by the observations from
the debugging practices of popular projects. For example,
we observed that developers in project GCC often try to
locate the bug-inducing commits first when they work on
a reported bug. Comments such as “Confirmed, started with
7239357 [26] are often left in bug reports. Similar prac-
tices are also observed among other projects. For instance,
when debugging SOLR-2606 [27], a developer located the
corresponding bug-inducing commit and left a message
“I'm fairly certain this is caused by the enhancements made in
SOLR-1297 to add sorting functions”. Such message reveals
that the bug was caused by the code committed to imple-
ment enhancements requested by issue SOLR-1297. After
obtaining such knowledge, developers located and resolved
this bug quickly. Our observations are also confirmed by the
feedbacks from industry (see Section 2.1).

Based on the above intuition and observations, we pro-
pose Historical Spectrum-based Fault Localization (HSFL)
in this study, which leverages the information of version
histories in fault localization. HSFL first identifies the bug-
inducing commit in the version history for each bug-
revealing test. In other words, it finds the first commit in
the version history from which the bug-revealing test cases
start to fail. However, code commits are usually tangled [28].
They are often large in size, but only a small part of the
code elements introduced in these commits are related to
the fault. Therefore, it is very challenging to distill the root
causes from the bug-inducing commits. Besides, the time
gap between when the bug-inducing commit is checked in
and the target version (i.e., the version subject to fault local-
ization) might be large, and lots of commits can be adopted
during the period. Therefore, it brings the challenge to trace
their evolutions to the target version for fault localization.

To address these challenges, HSFL builds a Historical
Spectrum (denoted as Histrum) for each suspicious code en-
tity introduced in the bug-inducing commits. The Histrum
traces the evolutions for each suspicious code element from
the inducing version (i.e., the version after the bug-inducing
commit is adopted) to the target version via history slic-
ing [29]. Specifically, it leverages the information of non-
inducing commits (i.e., those commits do not introduce the
bug) in the version histories to filter out those noises in
the bug-inducing commits. HSFL then computes the sus-
picious score for each code entity based on the Histrum via
leveraging those techniques proposed for SBFL (e.g., Ochiai
[30]), where a bug-inducing commit and a non-inducing
commit are analogous to a failing test and a passing test,
respectively. The key insight of our approach is that those

2

code entities modified by more bug-inducing commits but fewer
non-inducing commits are more likely to be the root cause of
the bug. HSFL further examines whether those suspicious
code entities evolved from bug-inducing commits have been
executed by bug-revealing tests in the target version to filter
out potential noises for better fault localization.

We evaluated HSFL on 357 real bugs from the DE-
FECTS4] [31] benchmark. Specifically, we applied HSFL to
each of the bugs and located the faulty code entities at the
statement level, which is the granularity widely adopted by
existing SBFL techniques (i.e., [11], [12], [14], [15], [16]), and
required by automated program repair techniques to gener-
ate the fault space [7], [8]. We compared the results gener-
ated by HSFL with the state-of-the-art SBFL techniques [11].
Our evaluation results show that HSFL can significantly
improve SBFL’'s performance. For example, HSFL locates
and ranks the buggy statement at Top-1 for 77.8% more
bugs compared with SBFL, and 33.9% more bugs for Top-5.
HSFL also performs significantly better than SBFL for the
evaluation metrics MAP and MRR, with an improvement
of 28.3% and 40.8% respectively. We also applied other
SBFL techniques [32], [33], [34], [35] in the Histrum model,
and found that HSFL also achieves significant better per-
formances using other techniques such as Tarantula [32],
Op2 [34], Barinel [35] and DStar [33]. We also compared
HSFL with other six families of fault localization techniques,
including mutation-based, slicing-based, stack trace-based, pred-
icate switching-based, hybrid-based and learning-to-rank-based
techniques. Our extensive evaluations show that our pro-
posed approach can not only outperform existing baselines
from different families, but also it can boost the performance
of existing techniques. Moreover, the results generated by
HSFL can significantly improve the performance of the
state-of-the-art search-based APR techniques. Specifically,
the first correct patch can be searched 3.02 times faster via
leveraging the fault space generated by HSFL compared
with that generated by SBFL.

In summary, our major contributions are as follows.

e Observation: We made observations from both open
source communities and industry that version histories
contain useful debugging information and bug-inducing
commits are helpful to understand and locate software bugs.

e Originality: We are the first to leverage bug-inducing
commits in facilitating fault localization. Specifically, we
propose a novel model called historical spectrum, which
builds a spectrum along the version histories in orthogonal
to the conventional coverage based spectrum.

o Implementation: We implement the proposed idea as a
fault localization technique, HSFL, which leverages existing
techniques (e.g., Ochiai) to rank all suspicious code entities
based on the historical spectrum.

e Evaluation: We evaluate HSFL on the DEFECTS4]
benchmark and compare it extensively with the state-of-the-
art FL techniques from seven different families. The results
show that our proposed approach can not only outperform
existing baselines from different families, but also it can
boost the performance of existing techniques. More impor-
tantly, it can also significantly boost the performance of the
state-of-the-art automated program repair techniques to find
the correct patches.

The rest of the paper is structured as follows. Section

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

2 presents the motivation and challenges of this work. In
Section 3, we present our approach in detail. Experimental
setup is introduced in Section 4, and Section 5 presents the
experimental results which demonstrate the usefulness of
HSFL. In Section 6, we discuss several points related to the
performance of our proposed tool. Section 7 discusses the
related works and Section 8 concludes this work.

2 MOTIVATION AND CHALLENGES

In this section, we present our observations and the motiva-
tion of this study together with the potential challenges.

2.1 Debugging Practice

Version control systems are widely used to manage soft-
ware evolution. The version histories record how faults are
introduced into the software. Such information is impor-
tant and usually leveraged by developers in debugging.
We observe that developers of open source projects often
discuss about the information of version histories, especially
the bug-inducing commits, in bug reports. A bug-inducing
commit is the one that introduces a bug [23]. It causes some
tests, called bug-revealing tests, start to fail until the bug
is fixed. After the bug-inducing commit is submitted, the
bug-revealing test cases start to fail. Specifically, We found
that substantial bug reports, 821 and 1733 bug reports from
GCC and Apache projects respectively, contain discussions
about bug-inducing commits by searching the keywords of
“started with”, “caused by” and “introduced by” among the
bug reports tracked in the associated bug-tracking system.
We selected these three keywords since by sampling a small
set of bug reports randomly, we observed that developers
in our selected projects mostly used these keywords to
deliver the information of bug-inducing commits. Examples
of these bug reports [26], [27] are shown in Section 1. We also
observed that the root cause of a bug is frequently correlated
with its bug-inducing commits. For instance, we found that
for 78.9% of those bugs, at least one statement in their bug-
fixing commits have been modified by the associated bug-
inducing commits. Inspired by this, we further surveyed
developers from industry to understand the role of the
information of version histories and bug-inducing commits
in general practices of debugging and fault localization.

To understand current debugging practices in industry,
we designed an online survey following the methodology
of an existing work [36] and distributed it to the developers
at Microsoft. Before distributing our survey, we conducted
pilot interviews with 2 experienced engineers at Microsoft
to discuss whether our designed questions and answers are
appropriate. Based on the collected comments and feed-
back, we refined our survey questions in order to ensure
that our designed questions are relevant and clear!. For
instance, we used “traces” and “running log” in two options
in the first question at the first beginning. However, the
involved engineers suggested that these two terms are hard
to differentiate in practice and thus might not be good
answers. We modified these answers accordingly, and then
distributed our survey through the discussion groups at

1. The survey is available at https:/ /www.wjx.cn/jq/19791453.aspx

0% 20% 40% 60% 80% 100%

Log Information]

Test Coverage

Version History

Stack Traces

Others

Fig. 1: What Information Have You Ever Used for Debug-
ging?

Microsoft, which cover nearly 1,500 developers from mul-
tiple products. The survey was posted for a week. We set
the time to one week since we observe that there is no
increasing number of feedback received after one week.
Finally, 109 valid responses were received, and we kept
the 103 responses submitted from those developers who
have at least 2 years of industrial software development
experiences in our analysis. We consider these developers
as experienced ones in terms of debugging. The response
rate is hard to measure since this survey was posted on
discussion groups, which is not mandatory. Besides, it is
hard to measure exactly how many developers have viewed
the post during the one week.

We are first curious about what information is useful and
has been leveraged by developers in debugging in practice.
Five options are provided, which are log information, test
coverage, stack traces, version histories and others. The design
of these five options is motivated by the findings of existing
studies [23], [37], [38], [39], [40] and refined after the pilot
interviews. Figure 1 shows the results, and we can see
that among the 103 responses analyzed, 75.7% (78/103) of
the developers have ever leveraged version histories for
debugging, and the ratio is comparable with the ratios of
stack traces and log information. This demonstrates the
usefulness of version histories in debugging. We are then
curious to know what specific information of version histo-
ries that these 78 developers think is useful for debugging,
and Figure 2 shows the results. Specifically, 93.6% (73/78) of
them think bug-inducing commits are useful for debugging,
and 74.4% of them (58/78) find that regression range (i.e.,
the range of commits between the last known good version
to the first known bad version of the bug) is useful. These
results show that the majority of developers (73/103) find
bug-inducing commits providing useful debugging infor-
mation. For those 73 developers, we further asked them
in which ways have they leveraged such information for
debugging in practice. Figure 3 shows the statistical results
of the usages of bug-inducing commits by these developers.
95.9% of them (70/73) have leveraged bug-inducing com-
mits to understand the root causes of the bugs and further
locate the faults. However, we find that 74.3% (52/73) of
these developers conduct the process of fault localization
manually due to the lack of automated tool support. We
also observe that a substantial of developers mention that
they leveraged the built-in tool “git bisect” to search among
version histories.

Since the conducted survey is not the major contribu-
tions of this study, we only disccused partial results in this
section. Detailed survey results are available online.> Nev-

2. https:/ / github.com/justinwm /HSFL /blob /master /survey.pdf

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

Bug-Inducing Commit

Regression Range

Recent Commits
Relevant Bugs' Fixes

Others]

0% 20% 40% 60% 80% 100%

Fig. 2: What Information of Version Histories is Useful for
Debugging?

Bug Triage]

Revert Commits |

Understand Root Cause

Design Test Cases

In Other Ways [

0% 20% 40% 60% 80% 100%

Fig. 3: In Which Ways Have You Ever Leveraged Bug-
Inducing Commits?

ertheless, the above discussed results confirm our intuition
and reveal the following three points. First, the information
of version histories, especially the bug-inducing commits,
is useful for developers to debug in practice. Second, bug-
inducing commits contain rich information of the root
causes of software bugs, which is helpful for fault localiza-
tion. Third, the majority of developers lack automated tool
supports to leverage such information.

As revealed by our survey, it is a common practice
for developers to leverage “git bisect” to search for the
information of bug-inducing commits when debugging for
large-scale projects like LLVM and Lucene. Actually, we also
observe that such practice can also be generalized to many
open-source project communities. Specifically, we selected
three large-scale open source projects: Lucene, LLVM and
Accumulo. And then we searched their bug reports using
the keyword “bisect”. We observe that many bug reports
(i.e., in total nearly 100 for the three projects) directly contain
such information and deliver the message that developers
actually adopted such a heuristic in practice to identify the
inducing commits when debugging. Be noted that not all de-
velopers who adopted “git bisect” to identify bug-inducing
commits will leave such messages on the associated bug
reports. Several examples are selected as follows for each
project:

For Lucene:

“ait bisect blames commit 26d2ed7c4ddd2 on SOLR-10989" 3
“According to git bisect, this was broken by SOLR-8728"

For LLVM:

“bisect indicates that ¥146856 is the first bad commit (const-
expr handling improvements.)” °

“A bisect points to r115374" ©

“My bisect also pointed to 1149641 is the first bad commit.” ”

For Accumulo:

3. https:/ /jira.apache.org/jira/browse/SOLR-11020
4. https:/ /jira.apache.org/jira/browse/SOLR-8788
5. https:/ /bugs.llvim.org/show_bug.cgi?id=11614

6. https:/ /bugs.llvim.org/show_bug.cgi?id=8284

7. https:/ /bugs.llvm.org/show_bug.cgi?id=12581

4

“Using git bisect, found the breaking commit to be 659a33e8
as a part of ACCUMULO-4596" 8

“qit bisect revealed f599b46 to have introduced this problem
(ACCUMULO-3929).” °

The above examples demonstrate that the practice of
searching bisectly among version histories to look for bug-
inducing commits is common and feasible, even for large-
scale open-source projects. These examples also shed lights
on the design of our approach in this study.

2.2 Motivating Example

The previous subsection presents our observations from
both open source communities and industry, which moti-
vates us to leverage the information of bug-inducing com-
mits for automated fault localization. However, commits are
often large in size and tangled with code modifications for
multiple purposes [28]. For example, we investigated the
identified bug-inducing commits for the Chart project from
DEFECTS4] [31], and found their average size (i.e., number
of modified statements) is 436.2 (with a median value of
165). However, the average size of the fixing patches of
the corresponding bugs is 3.92 (with a median size of
2). Therefore, locating the buggy code entities in a bug-
inducing commit is challenging.

We propose to build a historical spectrum along the
version histories to address the challenge. Specifically, we
leverage those commits, which are made after the bug-
inducing commit but neither introduce nor fix the bug, to
help pinpoint the buggy code entities. Those commits are
referred as non-inducing commits. Figure 5 shows the concept
of historical spectrum. Suppose v; is the target version for
fault localization, and c¢; is the bug-inducing commit since
the bug-revealing tests start to fail since version v; after
¢; is committed. Those commits made after ¢; but neither
introduce nor fix the bug are non-inducing commits (e.g.,
ci+1). We build a historical spectrum by analyzing those
code entities modified in the bug-inducing commits and
non-inducing commits (i.e., those commits displayed in
shadow as shown in Figure 5). Our key insight is that those
code entities modified by more bug-inducing commits but fewer
non-inducing commits are more likely to be the root cause of the
bug.

Let us illustrate our insight using a concrete example
shown in Figure 4, which is adapted from the bug Lang
6 in the DEFECTS4] benchmark [31]. In this example, the
target version for bug localization is #0b5c6d1, and the
buggy statement is line 95. However, the suspicious value
of the buggy statement reported by the state-of-the-art tech-
nique [11] using formula Ochiai [30] is 0.180. It is only
ranked at 98" in the suspicious statement list, and there
are many ties (e.g., lines 94, 95, 96). These indicate that,
conventional SBFL cannot effectively locate the fault. The
bug-inducing commit of this bug is #b4255e6, and the bug-
revealing tests start to fail after this commit is adopted in the
Lang project. Intuitively, those statements introduced by this
commit (i.e., statements 88 and 89 in Figure 4(a)) are more
likely to be the root cause of this bug. Therefore, we should

8. https:/ /jira.apache.org/jira/browse/ ACCUMULO-4674
9. https:/ /jira.apache.org/jira/browse/ ACCUMULO-3942

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

5

Commit: #b4255e6 Commit: #0cb2ca8 Commit: #0b5c5d1 Buggy Statement ~ SBFL Rank
41: int pos = 0; 89:- for (int pt = 0; pt < len; pt++) { 94: for (int p{= 0; pt < consumed; pt++){ 0.180 | 94
42: int len = input.length(); 89:+ for (int pt = 0; pt < consumed; pt++){ 95: pos += A.cc(A.cpa(input, pos)); 0.180 | 95
43: while (pos < len) 90: pos += A.cc(A.cpa(input, pos)); 96: } 0.180 | 96

91: }

88:+ for (int pt = 0; pt < len; pt++) { 103:- CST[] newArray = new CST[length]; 108: CST[] newArray = new CST[length + 1]; 0.200 19
89:+ pos += A.cc(A.cpa(input, pos)); 104:+ CST[] newArray = new CST[length + 1]; 109: newArray[0] = this; 0.200| 20
90:+ } 105: newArray[0] = this; 110: return new AT (newArray) ; 0.200| 21
(a) Bug-Inducing Commit (b) Non-Inducing Commit (c) Target Version for Bug Localization (d) FL Results

Fig. 4: An Adapted Example from Bug Lang 6

increase the suspiciousness of statements 94 and 95 in the
target version correspondingly (since statement 94 and 95 in
#0b5c5d1 are evolved from statement 89 and 90 in #b4255e6,
respectively). Meanwhile, we also observe another commit
#0cb2ca8 as shown in Figure 4(b), which was made after
the bug-inducing commit #b4255e6 but before the target
version (commit #0b5cbd1). It changed statement 89 (i.e.,
evolved to statement 94 in the target version). However, this
commit did not change the status of the bug-revealing tests.
This indicates that statement 94 in the target version is less
likely to be the root cause as compared with statement 95.
Therefore, we can decrease the suspiciousness of statement
94. As a result, we can break the tie of lines 94, 95, and
96, which further confirms our intuition that the version
histories can help relieve the tie issue. In this way, we can
better locate the buggy statement (i.e., statement 95 in Figure
4(c)). The priority of other statements that are irrelevant
to the bug in the bug-inducing commit #b4255e6 can be
similarly lowered.

2.3 Challenges

Three major challenges hinder the process of leveraging
version histories in fault localization.

1) Identifying bug-inducing commits precisely is difficult.
Whether we can identify the bug-inducing commits
for all bug-revealing tests is unknown since some tests
might be complex in their designs and cannot be suc-
cessfully executed on previous versions. To address this
challenge, we minimize the testing logic for each bug-
revealing test before executing it to make it runnable on
more previous versions (see Section 3.1).

2) Precisely tracking code evolution is challenging. Pre-
cisely mapping code entities from the inducing ver-
sion (i.e., the version after the bug-inducing commit
is made) to the target version is challenging since the
gap between these two versions might be large. As
shown in the example in Figure 4, the buggy statement
is line 89 at the inducing version while it evolves to
line 95 at the target version. To resolve this challenge,
we leverage history slicing [29] to track the evolutions

Bug-inducing Non-inducing
Commit Commit

,
\ Y J

Commits used to build the historical spectrum

Target Version for
Fault Localization

x Bug-revealing tests fail V Bug-revealing tests pass

Fig. 5: Concept of Historical Spectrum

of code entities from the inducing version to the target
version (see Section 3.2).

3) Handling the noises of tangled commits is non-trivial.
commits are usually tangled with other irrelevant code
modifications [28] and large in their sizes, and thus
it is challenging to differentiate relevant statements
from them. For example, we investigated the identified
bug-inducing commits for the Chart project from DE-
FECTS4], and found their average size (i.e., the number
of modified statements) is 436.2 (with a median of 165).
However, the average size of the fixing patches for the
corresponding bugs is 3.92 (with a median of 2). Those
irrelevant statements might bring noises and thus de-
crease the performance of fault localization. To tackle
this challenge, we apply those techniques designed for
conventional SBFL (i.e., Ochiai [14] and Tarantula [32])
on the historical spectrum, to differentiate those buggy
statements from other irrelevant ones that are modi-
fied in the bug-inducing commits. We also examine
whether those suspicious code entities evolved from
bug-inducing commits have been executed by bug-
revealing tests in the target version in order to further
reduce noises in the historical spectrum (see Section
3.3).

3 APPROACH

We propose Historical Spectrum based Fault Localization
(HSFL) in this paper. HSFL takes the source code, the
version history and the associated test suite of a project as
inputs. It works at the statement level and contains three
steps. The overview of HSFL is shown in Figure 6.

First, it identifies the bug-inducing commit from the
version histories for each bug-revealing test case to identify
a set of suspicious code entities. Second, HSFL constructs a
historical spectrum (i.e., denoted as Histrum) to trace the
evolutions of each suspicious code entity from the bug-
inducing version (i.e., the version after the bug-inducing
commit is adopted) to the target version via history slicing
[29]. Third, HSFL computes the suspicious score for each
code entity based on Histrum. In particular, it works like
SBFL, where a bug-inducing commit and a non-inducing
commit are analogous to a failing test and a passing test
in SBFL, respectively. As such, the ranking formulae de-
signed for SBFL (e.g., Ochiai [30] and Tarantula [32]) can
be deployed to compute the suspicious score based on the
Histrum. HSFL further leverages the conventional coverage
based spectrum used in SBFL to further differentiate buggy
code entities from non-buggy ones in Histrum to generate
the final rankings.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1 1 1
" EUggy o [Test : Test Minimization E : | Tracking Code Evolutions | i i | Statistical Differentiation | ! Ranked List
Histories rogramf ~ |Suite. : ' i [Constructing Histrum |+ 1| Combing with SBFL | E of Statements
Hipapupeeepepepapepeyetl L VT g
Input of HSFL Identifying Bug-Inducing Commits Constructing Historical Spectrum Ranking Suspicious Statements Output of HSFL

Fig. 6: Overview of HSFL

3.1 Identifying Bug-Inducing Commits

As observed from the open source community, developers
identify bug-inducing commit by finding the first commit on
which the bug-revealing test starts to fail. For instance, de-
bugging activities such as “Confirmed, the test passes before this
commit (LUCENE-6758) and fails after” [41] can be frequently
observed in bug reports. Based on such observations and a
recent study [25], we formally define bug-inducing commits
as follows in this study:

Definition 1. Given a bug manifested by a bug-revealing
test t ¢, the associated bug-inducing commit is the commit
before which ¢ passes and after which ¢ fails.

To identify the bug-inducing commits, HSFL conducts
binary search on the complete version history (automated
by git bisect) following the heuristic used by existing ap-
proaches [25], [42], [43]. Such a heuristic is also adopted by
developers from open source community as observed in the
debugging practices discussed in Section 2.1. Specifically, we
extract the bug-revealing test ¢y from the target version and
then execute it on older versions of the program. However,
identifying the bug-inducing commit precisely for a bug-
revealing test £y can be non-trivial due to the following
reasons.

@Test
public void testCreateNumber() {
19: // LANG-521
20: Float number = Float.valueOf("2.");
21: assertEquals ("createNumber LANG-521 failed",
number, NumberUtils.createNumber ("2."));
23: // LANG-693
24: assertEquals ("createNumber LANG-693 failed",

Double.valueof(Double.MAX_YALUE),
NumberUtils.createNumber("" + Double.MAX VALUE));

Fig. 7: A Test Case of Project Lang

First, a unit test case might involve the testing logics
of several bugs. To ease the explanation, we refer to the
manifestation of a bug revealed by a bug-revealing test
as the “failing signature”, which includes the information
about the point of the failure and the error message gen-
erated in the failing test run. For example, the test method
testCreateNumber () in project Lang tests the functionalities
of multiple bugs (i.e., issues Lang-521 and Lang-693) as
shown in Figure 7. Suppose our target bug for fault lo-
calization is Lang-521 here. However, running such a test
case on previous versions might fail due to different bugs,
manifested by different failing signatures thrown by the test
(e.g., “createNumber LANG-521 failed, expected..., but ...” or
“createdNumber LANG-693 failed, expected..., but ...”). This is
because some bug fixes (e.g., fix for Lang-693) might be
reverted if we roll back to previous versions. As a result,
the test case will fail if it is executed on these versions.

This will hinder us to identify the bug-inducing commit
for the target bug since the bug-revealing test fails due
to another bug (i.e., Lang-693). Our approach takes the
following steps to address this challenge. It first analyzes the
failing signature of the bug-revealing test executed on the
target version to obtain the failure point triggering the target
bug (e.g., the assertion statement line at 21 in Figure 7). It
then comments out other assertion statements (e.g., line 24)
within the method to remove those testing logics for other
bugs. Those statements constructing the data structures for
assertion statements (e.g., line 20) will be kept to make the
code of the bug-revealing assertions runnable.

Second, some test cases might require extra self-defined
features to construct complex objects for testing. These
test cases might not be able to be executed successfully
on previous versions if the required features have not
been implemented on that version. For example, some test
cases of project Lang require an extra class FormatFactory
to construct objects to test the functionalities in class
ExtendedMessageFormat. However, class FormatFactory is
introduced in version #695289c. Therefore, those tests re-
quiring this class cannot be run successfully on those ver-
sions prior to #695289c¢. For such cases, identifying the bug-
inducing commit precisely is difficult. To handle these cases,
we introduce the concept of likely-inducing commits. Likely-
inducing commits include the first commit on which the
bug-revealing test fails with the targeted failing signature
and those commits on which the bug-revealing test is unable
to run successfully.

For each bug-revealing test t;, we can identify a bug-
inducing commit or a range of likely-inducing commits.
The identified bug-inducing commit can be either an initial
code commit or a subsequent code commit during software
evolution [23]. If the bug-inducing commit is an initial code
commit, it indicates that the first version of the source file
contains the bug. The bug is introduced by subsequent
code modifications otherwise. The initial code commit is
usually larger in its size compared with subsequent commits
[23]. Different types of inducing commits would have the
impacts on the performance of fault localization, which is
discussed in Section 6.2. For a target bug, we can identify a
set of bug-inducing commits C; or a set of likely-inducing
commits Cr, since there might be multiple bug-revealing
tests for the target bug. Those commits submitted prior to
the target version and do not belong to either C; or Cp,
are denoted as non-inducing commits C; with respect to the
target bug since they do not change the status of the bug-
revealing tests. For each commit ¢ € C; V Cr,, we denote the
statements introduced (i.e., modified or originally added) in
it as suspicious code entities (i.e., denoted as Spr).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

@ @) @ - (9 @) (o @) () G
5 @ @ @
6 6 6 6 ® target
@ 7 7 7 x7) | version
8 8 K8

(_’ bug-inducing commit O non-inducing commit

modified statement O unmodified statement

Fig. 8: An example of Historical Spectrum

3.2 Constructing Historical Spectrum

To leverage the suspicious code entities Sy obtained from
bug-inducing commits to locate faults at the target version
v, HSFL constructs Histrums for Sy so as to map the
statements in Sy to the ones in the target version v;. It also
tracks the evoluations of Sy to see if they have been further
modified by other commits subsequent to the bug-inducing
commit.

Figure 8 shows an example of a constructed historical
spectrum. Suppose c; is a bug-inducing commit, and state-
ments 5 and 6 are modified by c;. In order to leverage such
information to locate faults in the target version vs, Histrum
tracks the evolution of each statement to see whether it
has been further modified by other commits. For example,
statement 6 has been further modified by two non-inducing
commit (i.e., co and c3) and evolves to statement 8 at vs.
Statement 5 has been further modified by one bug-inducing
commit (i.e., ¢4) and evolves to statement 7 at vs. Here, ¢4
is another bug-inducing commit identified by other bug-
revealing test for the same bug.

To construct historical spectrum, we use history slicing
[29] to track the modification of Sy from the bug-inducing
version to the target version. Without loss of the generality,
we suppose the version history is (v1, ..., Vj,Vj41, ..., Un),
where v; is the bug-inducing version and v,, is the target
version. For each pair of two consecutive versions (v;, v;11),
we use the function M, ;11(s) to represent the statement
in vj4; that is mapped from the statement s in v;. We
leverage GUMTREE [44] to analyze the changes between
two versions and remove those non-semantic changes (e.g.,
formatting or modification of comments). There are three
different types of changes made between any two versions,
which are deletion, insertion, and update. Figure 9 shows the
change hunks for these three types of changes, where A and
C' denote the contextual part and B denotes the changed
part. Since the statements in hunks A; and C} in version v;
are unchanged, we can directly map them to those in hunks
Ajtq and Cj4q in the next version vj41. There are three
cases of the changed hunks. The mappings for statements in
a deleted or inserted hunk can be readily built as follows. In
the case of deletion, M, ;;1(s) = null,s € Bj, since the
statements in hunk B; are deleted and thus the mappings
are null. In the case of insertion, there are no statements
in v; that can be mapped to the statements in hunk B;
at version v;4;. The case for update is more complicated.
A continuous set of statements B; are modified to B;;
as shown in Figure 9(c). To find the optimum mappings
from B; to B; 1, we follow the work of history slicing [29]
and approach it as the problem of finding the minimum
matching of a weighted bipartite graph. The weight between

Gon

() deletion (b) insertion (c) update

Fig. 9: Line Mappings between two Consecutive Versions of
Deleted, Added and Updated Change Hunks

any two lines as shown in Figure 9(c) is computed as their
Levenshtein Edit Distance [45].

A bipartite graph is a graph whose vertices can be
divided into two disjoint and independent sets such that
every edge connects a vertex in one set to another. In our
setting, we regard each statement as a vertex, and thus we
have two disjoint sets of vertices B; and B;1. We connect
each statement in B; to each of the statements in B;; with
the weight of Levenshtein Edit Distance [45] between these
two lines of statements. For example, as shown in Figure
9 (c), we connect line 2 in B; to each of the statements
in Bj;+1 (ie., line 2 to 4). To obtain the Levenshtein Edit
Distance, we first tokenize each line of statement to a vector
of words following existing heuristics [23]. We then calcu-
late the minimum number of single-word edits (insertions,
deletions or substitutions) required to change one vector of
words into the other. The smaller the number, the higher
similarity between these two statements. We finally find
the minimum weight bipartite matching using the Kuhn-
Munkres algorithm [46], and record the identified best
mapping between these two hunks in function M, 1.
In our example shown in Figure 9(c), M, ,+1(5) = 4 and
Mj._>j+1(4) = null.

Our goal is to obtain M1, n(s), which finds the state-
ment in v, that is mapped from the statement s in v;.
Using the function M., ;1+1(s) for each two consecutive
versions, we can gradually calculate M,y = Mny_15n5 ©
Mpy_9sN—1 0 ... 0 M12(s). Note that not all statements
in Sir can be mapped to the target version since some state-
ments might be deleted during evolution and the mapping
function will return null for such cases. Using the function
M, v, we can successfully map the statements in Sy in the
bug-inducing version to the statements in the target version.
Similar procedures are conducted for those likely-inducing
commits in Cr..

3.3 Ranking Suspicious Statements

After mapping Sy to the target version based on the
Histrum, we can obtain a set of suspicious statements S¢
at the target version v,. Specifically, S¢ = {M1.,n(s),Vs €
Sy }. HSFL then ranks the statements in S¢ to locate faults.
The main challenge is to differentiate the buggy statements
from those irrelevant ones since S¢ might contain noises
(i.e., statements irrelevant to the bugs).

To address this challenge, HSFL first leverages the his-
torical spectrum built in the second step. Specifically, we
leverage the history spectra information to compute their
suspiciousness of being the root cause of the targeted bug.
The intuition is that those code entities modified by more

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

bug-inducing commits but fewer non-inducing commits are
more likely to be the root cause of the bug. It works like
SBFL, where a bug-inducing commit and a non-inducing
commit are analogous to a failing test and a passing test
in SBFL, respectively. As such, the techniques designed for
SBFL (e.g., Ochiai [30] and Tarantula [32]) can be deployed
to compute the suspicious score based on the historical
spectrum. Specifically, we use Ochiai [30] by default to
compute the suspicious score for each statement s € S¢ in
HSFL since it has been reported to be the optimum formula
for SBFL [2]. In particular, we investigate the impact of dif-
ferent SBFL formulae on HSFL in Section 5.2. Suppose that
¢; is the bug-inducing commit of s and it has been further
modified by a list of commits C = (¢, ..., ¢}, Cj41, ..., Cn), We
can calculate its suspicious as:

induce(s)

Histrum(s, ¢;) =
/N1 * (induce(s) + noninduce(s))

@

in which induce(s) denotes the number of inducing com-
mits that modified statement s, specifically, induce(s) =
{c: ¢ € Cr A c € C}|; noninduce(s) is the number of non-
inducing commits that modified statement s, specifically,
noninduce(s) = |{c : ¢ € CANc ¢ Cr}|; Nr denotes
the total number of bug-inducing commits which is |Cy|.
Let us further illustrate this using our example shown in
Figure 8. The suspicious score for statement 7 at the target
version is 1, which is calculated as 2/4/2 * (2 4 0), while the
suspicious score for statement 8 is 0.408 (1/4/2 % (1 + 2)).
Therefore, statement 7 is more likely to be the root cause of
the bug compared with 8.

Therefore, a statement s at the target version might have
multiple values obtained from the Histrum model since
it is possible that s is affected by multiple bug-inducing
commits. For the example shown in Figure 8, HSFL will
also build another historical spectrum starting from v, after
the bug-inducing commit ¢4 is adopted. Therefore, state-
ment 7 in the target version will have another suspicious
value. We use the maximum value of Histrum(s,c;) as
the final score for statement s. Specifically, Histrum(s) =
max{Histrum(s,c;),c; € Cr}.

To further help differentiate buggy statements from irrel-
evant ones in S, HSFL leverages the conventional coverage
based spectrum used in SBFL. This intuition follows that of
existing FL techniques [2], [11], where buggy statements are
more likely to be executed by failing tests than passing tests
in the target version v;. By integrating this with Histrum,
HSFL produces the final results:

(1 —a)* SBFL(s) s€ ANs ¢ Sc

HSFL(s) = q (1 —a) * SBFL(s) + a *x Histrum(s) sc€ AAsecSc 2

0 otherwise

in which A denotes the set of suspicious statements exe-
cuted by the bug-revealing tests at v;, and « is the weight
of combining Histrum and SBFL. By default, we set « to 0.5.
We investigate the effect of o in the overall performance
of HSFL in Section 5.3. In Equation 2, we set the final
scores as 0 for those statements that have not been executed
by the bug-revealing tests on v;. The intuition is that a
statement is unlikely to be the root cause if it has not been
executed by any of the bug-revealing tests on the targeted

8

version following existing studies [2], [11], [33]. In this way,
HSFL can further eliminate the nosies in S¢ caused by the
potential tangled statements in the bug-inducing commits.

For likely-inducing commits in C;, and the correspond-
ing suspicious buggy statements Sy, similar procedures are
conducted. However, since those commits do not definitely
introduce the bug, we decrease the effects of the Histrum
model by adding a weight to the value obtained from
Equation 1. Specifically, Histrump,(s) = Histrum(s)/|CL|.
The larger range of the likely-inducing commits, the smaller
weight it gets. The intuition is that the likelihood of each
likely-inducing commit in set Cy, to be the bug-inducing
commit is decreasing with the increase of size of Cy..

Using the final scores obtained by HSFL(s), we then rank
all the suspicious statements at the targeted version v;.

4 EXPERIMENT SETUP
4.1 Subjects

We evaluate the effectiveness of HSFL on the benchmark
dataset DEFECTS4J [31]. This benchmark contains substan-
tial real bugs extracted from large open source projects, and
it was built to facilitate controlled experiments in software
debugging and testing research [31]. DEFECTS4] has been
widely adopted by recent studies on fault localization and
program repair (e.g., [11], [47], [48], [49]). Following existing
studies [12], [13], we use all the five projects in DEFECTS4]
of version 1.0.1 with a total of 357 real bugs as subjects for
our experiments. Their demography is shown in Table 1.

TABLE 1: Subjects for Evaluation

Subject #Bugs KLOC Test KLOC #Test Cases
Commons Lang 65 22 6 2,245
JFreeChart 26 96 50 2,205
Commons Math 106 85 19 3,602
Joda-Time 27 28 53 4,130
Closure Compiler 133 147 104 7,929
Total 357 378 232 20,111

4.2 Measurements
To measure the effectiveness of HSFL, we adopt the follow-
ing three widely-used metrics in our study [12], [13], [23].

Top-N: This metric reports the number of bugs, whose
buggy entities (i.e., statements in our evaluation setting)
can be discovered by examining the top N(IN=1,2,3,...) of
the returned suspicious list of code entities. The higher the
value, the less efforts required for developers to locate the
bug, and thus the better performance.

MRR: Mean Reciprocal Rank [50] is the average of the
reciprocal ranks of a set of queries. This is a statistic for
evaluating a process that produces a list of possible re-
sponses to a query [51]. The reciprocal rank of a query is
the multiplicative inverse of the rank of the first relevant
answer found. This metric is widely used to evaluate the
ability to locate the first buggy statement for a bug [13],
[23]. The larger the MRR value, the better the performance.

MAP: Mean Average Precision [52] is by far the most
commonly used traditional information retrieval metric. It
provides a single value measuring the quality of information

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

retrieval performance [51]. It takes all the relevant answers
into consideration with their ranks for a single query. This
metric is also widely used to evaluate the ability of ap-
proaches to locate all the buggy statements of a bug [13],
[23]. The larger the MAP value, the better the performance.

When multiple statements have the same suspicious
score, we use the average rank to present their final rank-
ings, following the strategy to handle the tie issues widely
adopted by existing fault localization techniques [11], [12],
[53], [54].

4.3 Research Questions

This study aims to answer the following research questions.
¢ RQ1: How does HSFL perform in locating real bugs?

To answer this question, we apply HSFL to the 357
real bugs from DEFECTS4] as shown in Table 1, and then
evaluate the results using the metrics described in Section
4.2. We also compare our results with those obtained by
conventional SBFL reported by the state-of-the-art technique
[11]. We select SBFL techniques as the baseline in this RQ,
since SBFL is the most widely investigated technique and
has been reported to achieve good performance compared
with the others [55]. We compare HSFL with other baselines
systematically in the subsequent research questions.

e RQ2: How do different formulae affect the perfor-
mance of HSFL?

We use Ochiai [30] by default in HSFL since it has
been reported to be the best formula for SBFL [2], [11].
However, there are multiple formulae proposed and it is
yet unknown whether Ochiai is the optimum for HSFL.
In this research question, we choose the five best-studied
SBFL formulae [2], [11] and investigate how these different
formulae affect the performance of HSFL. The five adapted
SBFL formulae for HSFL are shown in Table 2. In these
formulae, induce(s), noninduce(s) and N are defined in
the same way as described in Equation 1, and Ny denotes
the total number of non-inducing commits for the target
bug.

TABLE 2: The Five Adapted SBFL Formulae for HSFL

Formula
S(s) =
S(s)

Name
Tarantula [32]
Ochiai [30]

induce(s) /Ny
induce(s)/Nj+noninduce(s) /Ny
_ induce(s)
\/NI*(induce(s)+noninduce(s))

Op2 [34] S(s) = induce(s) — %ﬁ(s)
i — noninduce(s)
Barinel [35] S(s) =1- noni:n’duce(5>t7:7’bduc6<5>

DStar [33] S(s) = induce(s)

noninduce(s)+Nj—induce(s)

We used x = 2, the most thoroughly explored value [11]

e RQ3: How does the weight o affect HSFL's perfor-
mance?

HSFL sets the weight to 0.5 by default to let the coverage
based spectrum has the same weight as Histrum. However,
it is yet unknown whether the default value is the optimum.
In this research question, we investigate the effect of this
weight o on the overall performance of HSFL. Specifically,
we change the weight from 0.0 to 1.0 with a step size of
0.1, and then examine the performance of HSFL based on
Ochiai.

9

e RQ4: Can HSFL improve the performance of search-
based automated program repair?

Automated program repair techniques extensively rely
on SBFL to generate the fault space [7], [9], [47], [48], which
affects the search space of search-based APR techniques [7].
Existing search-based APR techniques are known to suffer
from the search space explosion problem [8]. Therefore, bet-
ter fault space is always demanded to improve the efficiency
for searching the correct patches [56]. This research question
investigates the practical usefulness of HSFL in improving
the performance of the state-of-the-art search-based APR
techniques.

e RQ5: Can HSFL outperform other families of fault
localization techniques?

Besides spectrum-based fault localization techniques,
there are many other families of techniques proposed over
the years with the aim to locate suspicious code elements at
the statement level. Based on recent studies and a systematic
survey [11], [55], we summarize existing techniques to the
following nine families:

TABLE 3: Popular Families of FL Techniques

Family Techniques Description

utilizing test coverage in-
formation

utilizing test results from
mutating the program

Spectrum-based Ochiai [30] Dstar [33]

Mutation-based MUSE [57] Metallaxis [58]

Union [55], [59], Intersec-
tion [55], [59], Frequency
[55], [591]

StackTrace [37]

utilizing dynamic program

Slicing-based dependencies

utilizing crash reports em-
bedded in bug reports
utilizing test results from
mutating the results of con-
ditional expressions
utilizing the token informa-
tion of bug reports
utilizing the development
history

combing different tech-
niques using heuristics
combing different tech-
niques utilizing ma-
chine learning techniques

Stack trace-based

PredicateSwitching [55],

Predicate swithcing 160]

IR-based BugLocator [61]

History-based BugSpots [62]

Hybrid MCBFL [11]

Learning-based Learning-to-rank [55]

Different techniques are proposed via leveraging diver-
gent sources of information, such as the test coverage, test
results from mutating the program, dynamic program depen-
dencies, crash reports and so on. Moreover, recent studies
proposed the hybrid techniques, which leverage multiple
sources of information. For instance, Pearson et al. proposed
to combine mutation-based and spectrum-based techniques
together [11]. Learning-based techniques also combine mul-
tiple sources of information. Specifically, they treat the re-
sults of each technique as individual features, and then
leverage machine learning techniques to learn the optimum
way to combine them automatically. Learning-based tech-
niques differ themselves from hybrid ones in that they need
a separate set of data for model training.

In this RQ, we compare HSFL with these techniques with
the aim to further investigate the effectiveness of HSFL. IR-
based and History-based are excluded in our comparison
since these two families of techniques have been reported to
achieve extremely poor performance at the statement level
[55]. We compare and integrate HSFL with the state-of-the-
art learning-based technique in a separate research question

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

(i.e., RQ7) since it requires to divide the data into a training
and a testing part and then involves a training process. As
a result, 10 baselines from six different families have been
selected for comparison in this RQ in total. We compare their
performances with HSFL based on the DEFECTS4] dataset in
terms of metrics MAP, MRR and Top-N.

e RQ6: Can our Histrum model boost the performance
of other families of fault localization techniques?

Our proposed Histrum model provides a novel perspec-
tive to locate faults in terms of evolution history, and it can
actually be combined with any families of fault localization
techniques besides SBFL. In this RQ, we investigate whether
Histrum can boost the performance of other types of fault
localization as displayed in Table 3. Specifically, similar to
Equation 2, we integrate Histrum with a FL technique as
follows:

(1 —) *x FL(s) s€ ANs ¢ So

Boost(s) = { (1 — a) * FL(s) + a * Histrum(s) s€ . AAs€ S ®)

0 otherwise

in which F'L denotes an existing FL technique (e.g., MUSE
[57], MCBFL [11]), A denotes the set of suspicious state-
ments identified by the FL technique, and « is the combining
weight. We then compare the boosted results after integrat-
ing Histrum with the results of the original FL technique on
the DEFECTS4] benchmark.

e RQ7: Can our approach boost the performance of
learning-to-rank techniques?

Learning-to-rank techniques were proposed to combine
multiple FL techniques together [55], [63]. The basic idea is
to treat the suspicious score produced by each technique as
a unique feature and then use machine learning techniques
to find the model that ranks the faulty statement as high as
possible. In this RQ, we investigate whether our proposed
technique can be leveraged as a feature to boost the perfor-
mance of existing learning-to-rank techniques. Specifically,
we choose the state-of-the-art learning-to-rank technique
[55] for investigation.

Pearson et al. have evaluated multiple SBFL techniques
on the DEFECTS4] recently [11]. They provided the oracle
(i.e., the buggy statements) and the conventional coverage-
based spectrum for each bug. Zou et al. recently have
conducted a systematic empirical study to investigate dif-
ferent families of FL techniques and their combinations.
They provided their experimental data and the results of
different families of FL techniques as well as the newly
proposed learning-to-rank technique. To facilitate the re-
production of our evaluation results, we leverage those
publicly available dataset to generate the results of SBFL
and other baseline approaches instead of instrumenting
and computing by ourselves. We implemented HSFL in
Java. Our experiments are run on a CentOS server with
2x Intel Xeon E5-2450 CPU@2.1GHz and 192GB physical
memory. All the experimental data are publicly available
at: https://github.com/justinwm/HSFL

5 EVALUATION RESULTS

In this section, we answer the four designed research ques-
tions.

10
0.40 0.40
WSBFL DIHSFL WSBFL OHSFL
0.30 0.30
0.20 0.20
0.10 I IH 0.10 I I
0.00 0.00

Lang Math Chart Time Closure Lang Math Chart Time Closure

(a) MAP (b) MRR

Fig. 10: Results of MAP and MRR of HSFL and SBFL

5.1 RQ1:Effectiveness of HSFL

To answer RQ1, we present the results of HSFL evaluated on
the five projects shown in Table 1. Specifically, we use Ochiai
[30] in Histrum and the default combining weight a=0.5 in
HSFL. The results of SBFL are also generated using Ochiai.
Figure 10 displays the results of HSFL and SBFL in terms of
MAP and MRR, which show that HSFL outperforms SBFL
for all the five subjects in terms of both of the two metrics.
The improvement of MAP ranges from 16.0% to 57.2%, and
the improvement of MRR ranges from 22.8% to 94.0%. On
average, HSFL is able to achieve an improvement of 28.3%
and 40.8% for MAP and MRR respectively.

Figure 11 shows the results of HSFL and SBFL evaluated
by metric Top-N. HSFL ranks the buggy statement at Top-
1 for 64 bugs, which is 28 more than SBFL, achieving an
significant improvement of 77.8%. HSFL ranks the buggy
statements for 146 bugs within top 5, 177 within top 10,
and 205 within top 20, achieving an improvement of 33.9%,
18.0% and 10.8% respectively. The rankings of buggy state-
ments is crucial to measure the usefulness of fault localiza-
tion techniques. Developers usually only spend the efforts
to inspect the top-ranked suspicious statements. e.g., over
70% developers only check Top-5 ranked elements [6]. These
results shown in Figure 10 and Figure 11 indicate that HSFL
is more effective in locating bugs compared with SBFL and
is more useful for developers in practice.

5.2 RQ2:Effect of Different Formulae in HSFL

To answer RQ2, we present the results of HSFL using
different formulae as shown in Table 2 in the Histrum
model. For the combining weight «, we still use the default
value 0.5. Note that when we use a formula (e.g., DStar
[33]) in Histrum, we also adopt the same formula for the
conventional SBFL in Equation 2. Table 4 and 5 show
the results of MAP/MRR and Top-N respectively. In these

186 187 192 194 195 196 198 198 200 205
& 200 166 173 177
S 155 158
@
- 160 6 179 181 185

—A—SBFL HSFL

12 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Top-N

Fig. 11: Results of Top-N of HSFL and SBFL

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

TABLE 4: Performance of HSFL and SBFL using Different
Formulae Evaluated by MAP and MRR

11

TABLE 5: Performance of HSFL and SBFL using Different
Formulae Evaluated by Top-N

Pr Tech MAP MRR Prl Tech Top-1 Top-5 Top-10 Top-20
SBFL HSFL Impr(%) | SBEL HSFL Impr(%) SBFL HSFL |SBFL HSFL |SBFL HSFL |[SBFL HSFL

Tarantula | 0.244 0282 115.32% | 0.236 0.292 123.91% Tarantula| 5 11 26 28 35 37 42 46

oo | Ochiai 0248 0.299 120.27% | 0.236 0.303 128.72% o | Ochiai 4 11 28 29 36 39 42 47

& | Dstar 0.248 0.303 122.14% | 0.236 0.318 134.99% S | Dstar 4 11 29 32 38 41 44 51

— Op2 0.240 0.289 120.48% | 0.228 0.296 129.72% — Op2 4 11 26 29 35 39 41 47
Barinel 0250 0.300 120.08% | 0.241 0.309 128.12% Barinel 5 12 27 28 36 39 43 47
Tarantula | 0.247 0.283 114.75% | 0.261 0.309 118.43% Tarantula| 18 18 36 50 47 63 59 70

= | Ochiai 0245 0285 116.01% | 0.266 0.327 = 122.83% = |Ochiai 19 21 35 49 47 61 59 70

& | Dstar 0226 0267 117.78% | 0.253 0.305 120.94% & | Dstar 18 19 32 47 44 60 56 69

= Op2 0217 0255 117.18% | 0.228 0.278 121.61% = Op2 16 16 29 43 39 57 52 65
Barinel 0247 0284 115.06% | 0.261 0.314 120.24% Barinel 18 19 36 50 47 63 59 70
Tarantula | 0.160 0.215 133.97% | 0.127 0.232 182.63% Tarantula| 0 1 5 11 12 16 15 16

+ | Ochiai 0.182 0286 157.16% | 0.173 0.336 194.00% + |Ochiai 1 4 7 14 14 17 16 17

& | Dstar 0.182 0.234 119.01% | 0173 0.259 131.48% 2 |Dstar 2 3 7 10 13 14 14 14

v Op2 0.154 0.230 149.82% | 0.157 0.261 166.84% 54 Op2 1 3 6 10 12 13 15 14
Barinel 0.179 0.254 141.54% | 0.147 0271 184.91% Barinel 0 2 6 12 13 17 16 17
Tarantula | 0.212 0.280 132.31% | 0.190 0.303 159.52% Tarantula| 1 5 12 12 14 14 17 15

o | Ochiai 0.201 0.302 150.36% | 0.199 0.365 183.42% » | Ochiai 1 6 13 16 15 17 17 18

& | Dstar 0.207 0.302 145.62% | 0.210 0.357 169.75% & |Dstar 1 5 13 17 15 18 18 19

= Op2 0.198 0.248 117.63% | 0.222 0.309 139.98% = Op2 2 5 12 12 14 13 16 14
Barinel 0212 0285 134.44% | 0.190 0.330 173.77% Barinel 1 6 12 13 14 14 17 16
Tarantula | 0.111 0.166 ~ 150.55% | 0.135 0.203 150.82% Tarantula| 10 19 24 35 35 43 49 55

® | Ochiai 0.122 0170 140.12% | 0.148 0.225 152.20% ® [Ochiai 11 22 26 38 38 43 51 53

§ Dstar 0.133 0.139 14.66% | 0.170 0.178 14.44% § Dstar 16 18 27 29 39 37 48 45

O | Op2 0.143 0.146 11.63% | 0.171 0.175 12.42% O |Op2 15 18 28 27 40 38 52 44
Barinel 0.111 0159 143.57% | 0.135 0.209 = 155.10% Barinel 10 20 24 37 35 42 49 52
Tarantula | 0.187 0.234 125.50% | 0.194 0.260 134.11% Tarantula| 34 54 159%| 103 136 132%| 143 173 121%| 182 202 111%

& | Ochiai 0.192 0.246 128.27% | 0.205 0.288 140.81% Ochiai 36 64 178%| 109 146 134%| 150 177 118%| 185 205 111%

g Dstar 0191 0226 117.80% | 0.212 0.261 123.23% § Dstar 41 56 137%| 108 135 125%| 149 170 114%| 180 198 110%

E Op2 0.188 0.218 116.14% | 0.201 0.244 121.24% @ Op2 38 53139%| 101 121 120%| 140 159 114%| 176 184 15%
Barinel 0.189 0.238 12595% | 0.197 0.272 138.32% Barinel 34 59 174%| 105 140 133%| 145 175 121%| 184 202 110%

The highest improvement for each subject is highlighted in

two tables, different columns represent different metrics
evaluated while different rows represent the projects with
different techniques used. The bottom portions of the two
tables show the summary of the results (i.e., the weighted
average results for MAP and MRR, and the sum numbers for
Top-N). Figure 12 displayed the weighted average results
over the five subjects of SBFL and HSFL in terms of MAP
and MRR using the five different formulae.

In terms of MAP and MRR, HSFL achieves better perfor-
mance than SBFL for all subjects using different formulae.
On average, adopting Ochiai in HSFL achieves the optimum
performance (i.e., with an average MAP of 0.246 and MRR
of 0.288), and also achieves the optimum improvement
compared with SBFL (i.e., with an average improvement of
28.3% for MAP and 40.8% for MRR). The formula Barinel
achieves the second best performance with an average MAP
of 0.238 and MRR of 0.272, and it achieves an average
improvement of 26.0% and 38.3% for MAP and MRR re-
spectively. Adopting the formulae Tarantula, DStar and Op2
in HSFL also achieves better results compared with SBFL.
Specifically, the improvements for MAP are 25.5%, 17.8%
and 16.1% while the improvements for MRR are 34.1%,
23.2% and 21.2%.

Similar results are observed using the metric Top-N.
Adopting the formula Ochiai in HSFL achieves the optimum
performance (e.g., locating 64 bugs at Top-1 and 146 at Top-
5), followed by the formula Barinel (e.g., locating 59 bugs
at Top-1 and 140 at Top-5). HSFL also outperforms SBFL by
adopting the other three formulae in the Histrum model.

Adopting Ochiai [30] in HSFL achieves the best per-
formance on average, we then use the one-sided Mann-

Whitney U-Test [64] to see whether it is significantly better
than the other four techniques. The results show that the
performance of adopting Ochiai [30] in HSFL is only signifi-
cantly better than that of adopting Op2 (p < 0.05) while the
difference is not significant for the other three techniques.
These indicate that techniques Ochiai [30], Tarantula [32],
DStar [33] and Barinel [35] are suggested to be applied in
HSFL. However, all these techniques are designed for the
spectrum built from conventional testing coverage, whether
our proposed historical spectrum requires specific designed
techniques to achieve the optimum performance remains
unknown since these two types spectrum are different in-
trinsically. We leave the design of specific techniques for
Histrum as our future work.

5.3 RQa3: Effects of the Combining Weight o

To answer RQ3, we present the results of HSFL using the
formula Ochiai [30] while using a series of different weights
a (ie., from 0.0 to 1.0 with a step size of 0.1) to combine
Histrum and SBFL in HSFL. Figure 13 plots the results of
HSFL with respect to MAP and MRR for all the subjects.
Specifically, the x—axis represents the weight a used in
Equation 2 and the y—axis represents the values of MAP
and MRR. From the results, we can see that the performance
HSFL share similar patterns for the five different subjects.
The performance of HSFL is increasing when « is small
(< 0.5). It reaches its peak when « is around 0.5 and 0.7,
and then starts to decrease when « continues increasing.
When averaged over all the five subjects, HSFL achieves its
optimum performance when « is 0.5. These results indicate
that HSFL obtain its best performance when the Histrum

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

12
0.3
0.2
0.1
0
Tarantula Ochiai Dstar Op2 Barinel Tarantula Ochiai Dstar Op2 Barinel
MAP MRR

OSBFL OHSFL

Fig. 12: Average Results of SBFL and HSFL in terms of MAP and MRR using Different Formulae

0.40 0.40 0.40 0.30
0.35 0.35 0.35 | 0.25
0.30 0.30 0.30 - 0.20
0.25 0.25 0.25 0.15
—m— MAP 0.20 0.20 0.20 —m— MAP 0.10
—4— MRR 0.15 i 0.15 0.15 - —4— MRR 0.05
1 | T T T 1 1 | T T T 1 | T T T . | T T T
0 00 0.20.40.60.8 1 0 00 0.20.40.60.8 1 0 OO 0.20.40.60.8 1 0 OO 0.20.40.60.8 1 OOOO 0.20.40.60.8 1
(a) Lang (b) Math (c) Chart (d) Time (e) Closure

Fig. 13: The Performance of HSFL with Different Combination Weight o of Histrum

model and SBFL model are considered to be similarly im-
portant.

HSFL - 4‘ . O

10°

0! s 25

The Number of Ties

10%° 10 10

Fig. 14: The Number of Ties of the FL Results

When a=0, HSFL is equivalent to the conventional SBFL.
When a=1, HSFL only includes Histrum model. As we can
see, only using one of the two models in HSFL cannot
achieve the optimum performance, while combining both
models with similar weights performs the best. We found
that using only the SBFL model or the Histrum model will
result in serious tie issues via further investigation, which
is caused by the limited number of bug-revealing tests.
Due to the limited number of bug-revealing tests, SBFL is
known to suffer from the tie issue problem [21], [22]. The
Histrum model also suffers from this problem since the
number of bug-inducing commits is limited as a result of the
limited number of bug-revealing tests (note that HSFL only
identifies one bug-inducing commit for one bug-revealing
test). These two models complement well to each other, and
thus the combination relieves the tie issue. The combination
of Histrum and SBFL model is expected to relieves the
tie issue, since they use two different spectrum from two
divergent dimensions. This is confirmed by the results dis-
played in Figure 14, which shows the number of non-buggy
statements that are ranked in tie with the buggy statement
from the results returned by only the Histrum model, SBFL
and the combining of them, HSFL. The number of ties

returned by HSFL is significantly smaller compared with
that returned by SBFL (p = 1.3e-06) using the one-sided
Mann-Whitney U-Test [64]. The number is also significantly
smaller compared with that returned by Histrum (p = 2.6e-
14). These results show that our proposed Histrum model
can significantly mitigate the tie issue of conventional SBFL.

5.4 RQ4: Usefulness of HSFL in Automated Program
Repair

We evaluate the usefulness of HSFL based on the state-of-
the-art search-based APR technique CAPGEN [7] to answer
this RQ. It is well-known that the search-space explosion
and overfitting are the two long-standing open challenges
for search-based APR [7], [8]. In this RQ, we focus on
investigating whether the improvements made by HSFL
over the fault space can alleviate the search-space explosion
problem. Specifically, we leverage HSFL to generate the
fault space for CAPGEN instead of using SBFL. We then
investigate the number of candidate patches required to
be validated for CAPGEN in order to find the first correct
patch, and compare it with that of CAPGEN using SBFL. To
avoid the side effects caused by the overfitting problem, we
only selected those bugs that can be correctly repaired by
CAPGEN for comparison (i.e., those patches that are seman-
tically equivalent to developers-provided ones via manual
checking). In particular, two authors were involved in the
process of manual checking, and we also measured the inter-
rater reliability score (i.e., mean pairwise Cohen’s kappa
[65]) following the latest work to measure the reliability
of this process [66]. Among all the 190 generated plausible
patches [7], the authors are asked to label them as “correct”
and “incorrect”, and the obtained score of the mean pairwise
Cohen’s kappa is 0.957. Such a high score demonstrated the
reliability of our manual checking process [65].

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

This setup for this experiment follows the existing study
which evaluates the effectiveness of fault localization using
automated program repair [10], and Figure 15 shows the
results for all the bugs that are correctly repaired by CAP-
GEN. The results indicate that the searching efficiency of
CAPGEN can be significantly improved by leveraging HSFL.
For example, for bug Lang 57, due to the improvement of
the fault space generated by HSFL, the correct patch can be
searched 30 times faster. Only for three bugs (Math 57 ,Math
70 and Math 63), the searching efficiency of CAPGEN cannot
be improved since the fault spaces have not been improved
by HSFL. We further investigated the reasons behind and
found that the bug-inducing commits identified for these
three bugs are “initial” or “likely”, and such commits are
large in their sizes and contain lots of noises (i.e., irrelevant
non-buggy statements). As a result, it makes it extremely
challenging for HSFL to differentiate buggy statements from
non-buggy statements. Such negative cases motivate us to
investigate the effects of different types of identified bug-
inducing commits on the performance of HSFL (see Section
6.2 for more discussions). However, the first correct patch
is ranked only slightly lower (e.g., ranging from 0.04% to
0.09%) using the fault space generated by HSFL than that
by SBFL for these three cases, and the first correct patch
can be searched 3.02 times faster averaged over all bugs.
These results still demonstrate the usefulness of HSFL in
improving the searching efficiency of automated program
techniques, which is significant since search space explosion
is a long-haunting challenge in the domain of program
repair.

HSFL is also expected to improve the CAPGEN’s effec-
tiveness (i.e., in terms of the number of correctly repaired
bugs) via prioritizing correct patches before incorrect plausi-
ble ones. However, since CAPGEN already ranks the correct
patches before the incorrect plausible ones for 95.5% of the
patched bugs, the improvement that can be made by HSFL
is marginal.

5.5 RQ5: Comparing with Other Families of FL

To answer RQ5, we present the results of HSFL and other
families of FL techniques (i.e., as shown in Table 3) us-
ing the DEFECTS4] dataset. Similar to RQ1, Ochiai [30]
is used in Histrum and the combining weight is set to
a=0.5 by default in HSFL. The results of all baselines are
reproduced based on the dataset of existing studies [11],
[55]. Figure 16 displays the results in terms of MAP and
MRR, which shows that HSFL outperforms all baselines in
terms of both of the two metrics. The best family among
all the baselines is the hybrid technique MCBFL, which
combines spectrum-based and mutation-based techniques

! HH

[

>3

2

Q

£ |_||_||_||—||—||—| .
g 4«“’076 oo ,m“&@%“’é”%“’@é’%"é@&
()

2 %/‘(\/b/ 2 %/(\ Q,/ &7 &/ 87T KT KT S
_g(\ ‘\o o SIS NP NNE G E NGNS
€ @'b & Q(sf»%@/b@’b@’b@%@'b@'b@%@’b R

Fig. 15: Efficiency Improved to Find the First Correct Patch

13

together [11]. Compared with MCBFL, HSFL is able to
achieve an average improvement of 8.5% and 8.4% for
MAP and MRR respectively. The families SBFL (i.e., Ochiai
[30] and Dstar [33]) and MBFL (i.e., Metallaxis [58] and
MUSE [57]) achieves even poorer performance than MCBFL.
The average improvement achieved by HSFL over these
two families of the techniques is at least 28.3% and 34.0%
for MAP and MRR respectively. The performance of other
families of techniques are poorer as displayed in Figure 16,
and this is consistent with a recent survey [55].

Similar results have been observed in terms of the metric
Top-N as displayed in Table 6. Among all the techniques,
HSFL achieves the optimum performance. Second to HSFL,
the hybrid technique MCBFL achieves the second optimum
performance. Specifically, MCBFL ranks the buggy state-
ments for 59 bugs within top 1, 130 bugs within top 5 and
164 within top 10. The improvement of HSFL over MCBFL
is 8.5%, 12.3%, 7.9% and 4.1% for Top-1, Top-5, Top-10 and
Top-20 respectively.

The results displayed in Figure 16 and Table 6 demon-
strate the effectiveness of HSFL in locating bugs compared
with different families of FL techniques.

5.6 RQ6: Combining with Other Families of FL

Our proposed model, Histrum, constructs spectrum along
the version histories, which provides information in terms
of a novel perspective to locate faults. As previously investi-
gated in RQ1 and RQ2, it complements well to existing SBFL
techniques. In this RQ, we investigate whether the Histrum
model can also boost the performance of other families of
FL techniques. The Histrum model can be easily integrated
into other FL techniques as specified in Equation 3. To
answer this RQ, we compare the result of each FL technique
with that after integrating Histrum using Equation 3 on the
DEFECTS4] benchmark.

Table 7 displays the results in terms of MAP, MRR
and Top-N. Specifically, column “FL” denotes the original
performance of a FL technique without integrating Histrum,
while column “Boost” denotes the results after combining
Histrum. As revealed by the results, the Histrum model is
able to boost the performance of any family of FL tech-
niques. For the hybrid techniques, the performance can
be improved by 24.6% and 25.2% for MAP and MRR
respectively after integrating Histrum; For SBFL techniques,
the results have been well discussed in previous research
questions; For mutation-based techniques, the performance
can be improved by at least 29.0% and 33.5% for MAP
and MRR respectively after combining Histrum; For slicing-
based techniques, the Histrum model can boost the per-
formance by at least 61.4% and 89.3% for MAP and MRR
respectively; The improvements for stack trace-based tech-
niques are 65.4% and 75.0% in terms of MAP and MRR
respectively after incorporating Histrum, and these ratios
are 120.6% and 109.3% for predicate switching-based tech-
niques.

One interesting point as revealed by the results is that
the hybrid techniques are able to achieve the optimum
performance after combining it with Histrum (as displayed
with the background in Table 3). Specifically, it achieves
an average MAP of 0.283 and MRR of 0.333, which outper-
forms HSFL by 14.9% and 15.6% respectively.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

14
0.300 =
D NS, % z
0.250 & s c 8 -
SN D\ S o B s A& D) c 9 ||
0.200 o o 5 0® N B 2 R Q
2 RN O H = 5 . 8 & @8 |2
0.150 <] R R = S G o 9 9
) S ¢ & g g 2 £ ENENNENENE
0.100 © ENENENENE g g 5 £ g
() et =
| [HEE
0.000
MAP MRR
B Ochiai B Dstar B Metallaxis BMUSE BFrequency EUnion Olintersection O StackTrace O Predicte OMCBFL OHSFL
Fig. 16: The Performance of Different Families of Fault Localization Techniques in terms of MAP and MRR.
Rank:TopN | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
HSFL 64 99 116 133 146 155 158 166 173 177 186 187 192 194 195 196 198 198 200 205
Ochiai 37 66 8 98 107 119 124 132 138 148 153 156 161 1le4 166 172 173 177 179 183
Dstar 3 68 8 98 106 118 122 131 137 148 154 158 162 164 166 171 172 175 177 181
Metallaxis | 46 68 86 103 111 117 121 124 135 141 145 150 151 155 158 160 166 171 171 173
MUSE 27 43 56 65 75 80 8 8 90 9 103 107 111 116 120 123 127 129 132 133
Union 8 2 3 4 53 58 64 6 72 75 76 79 8 84 90 93 98 100 100 101
Frequency | 7 20 31 39 47 51 60 63 6 70 71 73 76 79 8 88 94 95 99 99
Intersecton | 7 19 31 39 46 50 54 5 61 64 66 67 69 72 78 8 8 8 8 90
StackTrace | 23 31 36 42 46 49 49 49 51 59 64 66 70 72 74 75 77 78 80 81
Predicte 13 18 21 29 30 34 3 3 39 4 51 5 5 61 6 6 6 71 72 75
MCBFL 59 93 107 119 130 136 144 151 160 164 170 175 176 180 184 186 188 193 195 197
TABLE 6: The Performance of Different Families of Fault Localization Techniques in terms of Top-N.
These results indicate that our proposed Histrum model i:g
complements well to existing techniques. Not only can it 5},
s &
boost the performance of SBFL, but also the other families of 2 190
FL techniques. Specifically, combining Histrum with hybrid ' 170
. - : . T 150
techniques is able to achieve the optimum performance. =
Z 110
£ 9%
. . . . (- _/ —+-without -=-with -<MCBFL -o-HSFL
5.7 RQT7:Integrating with Learning-to-Rank Techniques 5

Recently, Zou et al. proposed to combine all families of FL
techniques via learning-to-rank techniques [55]. Specifically,
it treats the suspicious score generated by each FL technique
as an individual feature, and then leverages rankSVM [67]
to learn the optimum model based on a separated training
dataset. In total, the results of the following 10 different FL
techniques have been selected as features in their experi-
ments:

techniques selected as individual features : Ochiai, DStar,
Metallaxis, MUSE, Union, Intersection, Frequency, StackTrace,
PredicateSwitching, BugSpots.

The details of these techniques have been well explained
in Table 3. Ten-fold validation has then been adopted to
evaluate the performance of the learned model.

To answer this RQ, we compare the original results using
the above 10 techniques and that after integrating HSFL, in
which case, the results of HSFL have been considered as the
11th feature. The experimental results show that the MAP
and MRR can be improved by 3.7% and 5.4% respectively,
and the results in terms of Top-N are displayed in Figure 17.
In order for comparison, we also display the results of HSFL
and MCBFL since it achieves the optimum performance
among all the baselines as displayed in Table 7. In summary,
the performance of the learning-to-rank technique has been
improved after incorporating our proposed approach as an
individual feature.

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Top @N

Fig. 17: Integrating with Learning to Rank Technique. ‘with’
Denotes the Results Obtained with HSFL as a Feature while
‘without” Represents the Results without Considering HSFL.

6 DISCUSSIONS
6.1 Effectiveness of Identifying Bug-Inducing Commits

Our strategy to identify the bug-inducing commits is
adopted by existing works [25] and also those developers
from open source projects (see Section 3.1). Actually, the
detected bug-inducing commits identified by this strategy
can be classified into the three types as mentioned in Sec-
tion 3.1: 1) the bug-inducing commit is precisely identified
and it is the initial commit of the buggy source file (ie.,
denoted as initial commit); 2) the bug-inducing commit is
precisely identified and it is one of the subsequent commits
made to the buggy source file (i.e., denoted as subsequent
commit); or 3) a set of likely-commits are identified as the
approximation of bug-inducing commits since it is hard to
identify the precise one. Figure 18 shows the distribution
ratios of these three different types of inducing commits for
the five subjects. The majority of the bug-inducing commits
identified are the initial commits, which account for 59.7%
of the bugs. 26.6% of the bug-inducing commits identified

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE
Transactions on Software Engineering

15

TABLE 7: Performance of Different Families of Fault Localization Techniques and Their Combinations with Our Proposed Histrum
Model. Denotes the Best Performance in terms of Different Metrics. Denotes the Performance of HSFL. ‘FL” Denotes the
Performance of a Original FL Technique without Histrum. ‘Boost” Denotes the Performance after Combining our Histrum Model.

Family Technique Project MAP MRR Top@1 Top@5 Top@10 Top@20
FL Boost FL Boost FL Boost FL Boost FL Boost FL Boost
Chart 0.182 0.286 0.173 0.336 1 4 7 14 14 17 16 17
Time 0.201 0.302 0.199 0.365 1 6 13 16 15 17 17 18
::3 Closure 0.122 0.170 0.148 0.225 11 22 26 38 38 43 51 53
5 Math 0.245 0.285 0.266 0.327 19 21 35 49 47 61 59 70
Lang 0.248 0.299 0.236 0.303 4 11 28 29 36 39 42 47
o) Ave/Sum 0.192 0.246 0.205 0.288 36 64 109 146 150 177 185 205
& Chart 0.197 0.234 0.197 0.259 2 3 7 10 13 14 14 14
Time 0.207 0.302 0.210 0.357 1 5 13 17 15 18 18 19
E Closure 0.133 0.139 0.170 0.178 16 18 27 29 39 37 48 45
A Math 0.226 0.267 0.253 0.305 18 19 32 47 44 60 56 69
Lang 0.248 0.303 0.236 0.318 4 11 29 32 38 41 44 51
Ave/Sum 0.192 0.226 0.212 0.261 41 56 108 135 149 170 180 198
Chart 0.183 0.253 0.176 0.305 2 5 7 9 10 14 13 17
@ Time 0.173 0.245 0.280 0.378 4 7 11 14 15 17 20 19
;é Closure 0.070 0.122 0.089 0.157 7 14 16 28 23 34 26 38
1?, Math 0.236 0.282 0.265 0.330 18 22 40 52 47 58 63 67
= Lang 0.310 0.357 0.379 0.436 15 19 37 41 46 47 51 52
E Ave/Sum 0.179 0.231 0.215 0.287 46 67 111 144 141 170 173 193
E Chart 0.130 0.220 0.157 0.321 2 6 6 10 8 13 10 17
Time 0.052 0.154 0.056 0.206 0 3 4 10 5 12 7 12
3 Closure 0.061 0.101 0.081 0.139 6 15 16 21 19 26 27 36
§ Math 0.132 0.206 0.158 0.237 7 12 28 39 37 51 50 64
Lang 0.179 0.248 0.271 0.340 12 18 21 24 27 35 39 43
Ave/Sum 0.108 0.172 0.142 0.223 27 54 75 104 96 137 133 172
Chart 0.160 0.220 0.146 0.247 1 4 6 9 10 11 13 12
B Time 0.050 0.190 0.044 0.254 0 5 2 9 2 9 5 12
§ Closure 0.003 0.045 0.002 0.056 0 5 0 10 0 13 1 18
g Math 0.126 0.179 0.111 0.178 4 7 19 30 26 38 35 53
= Lang 0.189 0.248 0.166 0.244 2 8 20 24 32 35 45 47
Ave/Sum 0.088 0.146 0.078 0.155 7 29 47 82 70 106 99 142
Chart 0.159 0.226 0.146 0.254 1 4 6 9 10 11 12 13
Time 0.052 0.195 0.046 0.257 0 5 2 9 2 9 4 12
%0 5 Closure 0.003 0.045 0.002 0.056 0 5 0 10 0 13 1 18
% 5 Math 0.131 0.182 0.119 0.179 4 6 22 32 29 39 39 56
Lang 0.202 0.256 0.188 0.260 3 9 23 26 34 37 45 48
Ave/Sum 0.092 0.149 0.084 0.159 8 29 53 86 75 109 101 147
Chart 0.147 0.218 0.136 0.249 1 4 6 9 8 11 10 12
g Time 0.049 0.189 0.042 0.237 0 4 2 9 2 9 4 12
‘g Closure 0.003 0.045 0.002 0.056 0 5 0 10 0 13 1 18
g Math 0.117 0.166 0.107 0.161 4 6 18 27 25 36 35 53
;E Lang 0.178 0.234 0.159 0.232 2 8 20 23 29 32 40 44
Ave/Sum 0.083 0.139 0.074 0.147 7 27 46 78 64 101 90 139
Chart 0.147 0.227 0.165 0.263 2 3 6 9 8 13 8 15
Y g Time 0.033 0.157 0.043 0.227 0 11 4 11 5 12
E E Closure 0.023 0.065 0.028 0.080 3 4 14 4 15 5 20
"é é Math 0.099 0.153 0.105 0.169 6 8 17 27 21 37 30 53
& &» Lang 0.208 0.274 0.238 0.326 12 18 15 22 22 32 33 39
Ave/Sum 0.089 0.148 0.100 0.176 23 40 46 83 59 108 81 139
%0 &0 Chart 0.058 0.130 0.059 0.162 0 2 2 5 4 10 4 12
ﬁ % Time 0.025 0.146 0.048 0.214 1 4 2 8 2 8 2 8
(% :% Closure 0.024 0.064 0.045 0.087 5 8 7 15 8 18 11 25
% % Math 0.062 0.130 0.078 0.146 4 7 12 24 15 33 26 49
-GEJ "g Lang 0.112 0.196 0.113 0.219 3 10 7 17 15 27 32 38
& & Ave/Sum 0.054 0.118 0.069 0.143 13 31 30 69 44 96 75 132
Chart 0.208 0.311 0.206 0.350 2 5 9 13 14 18 15 18
Time 0.229 0.315 0.308 0.409 3 6 14 17 16 19 18 19
E E Closure 0.135 0.194 0.170 0.234 15 24 28 37 36 43 48 48
E % Math 0.286 0.330 0.325 0.388 24 28 45 56 54 64 65 71
Lang 0.324 0.362 0.372 0.406 15 17 34 39 44 47 52 55
Ave/Sum 0.227 0.283 0.266 0.333 59 80 130 162 164 191 198 211

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

are the subsequent commits. For a small part of bugs (i.e.,
13.7%), HSFL can only identify a set of likely-inducing com-
mits. For project Time, the ratio of likely-inducing commits
is extremely higher than the other projects. It is because
that most of Time’s test cases require extra classes (e.g.,
DateTime) to create time objects for testing. Those tests can
not be successfully run on old versions since the required
extra classes have not been checked in to the system. In this
case, we cannot precisely identify the bug-inducing commit
and thus use likely-inducing commits instead.

We further examined those bugs whose bug-inducing
commits are identified as Type 1 or Type 2, we found that
95.8% of those bugs’ root causes (i.e., fixing statements) have
overlap with the statements modified by the bug-inducing
commits identified by this strategy. This demonstrates that
the precision of such strategy is high. Such strategy might
not be able to retrieve all the bug-inducing commits for a
bug if there are multiple since the bug-revealing tests might
not be complete. However, HSFL's goal is not to retrieve all
of them. As long as the identified bug-inducing commits are
precise, HSFL is able to improve the performance of fault
localization. The improvements shown in our evaluation
confirmed this point.

6.2 Effects of Different Kinds of Bug-Inducing Commits

Different types of bug-inducing commits will affect the
performance of HSFL. Figure 19 shows HSFL's performance
based on different types of the identified bug-inducing
commits. For subsequent commits, HSFL achieves the op-
timum performance with an average of MAP of 0.316
and MRR of 0.377. Compared with SBFL, it achieves the
improvements of 88.8% and 117.4% for MAP and MRR
respectively. For the type of initial commits, HSFL is able
to achieve an average improvements of 11.5% and 21.0%
for MAP and MRR respectively. However, there are no
significant improvements for the type of likely inducing
commits. Such differences are caused by the different sizes
(i.e., modified number of statements) of the bug-inducing
commits. Histrum is built on those modified statements
of the bug-inducing commits. Therefore, the larger size of
the bug-inducing commit, the more noises (i.e., those non-
buggy statements irrelevant to the bug) it contains, and thus
more difficult for HSFL to eliminate the noises and distill the
root causes. Figure 20 shows the sizes of these three types of
bug-inducing commits in terms of the number of modified
statements. The median number of modified statements is
102 for subsequent commits of the five subjects, and the
number for initial commits is 1,575. This number is even
larger for likely-inducing commits, which is around 10°. As
a result, HSFL performs the best for subsequent commits

Lang [I
Math [I
Chart [|
Time [—

Closure | I
0.00 0.20 0.40 0.60 0.80 1.00

O Subsequent O Initial B Likely

Fig. 18: Ratios of Different Types of Inducing Commits

16

and worst for likely-inducing commits. Note that, If the
identified bug-inducing commits are a set of likely-inducing
commits, we aggregate all the modified statements over all
these likely-inducing commits. It is common that the likely-
inducing commits include the initial commit of the code
base with lots of source files checked in to the project. There-
fore, it is not surprising that the likely-inducing commits
contain the largest number of modified statements.

Actually, delta-debugging [68] can be leveraged to help us
identify the minimum set of changes that cause the bug in
those large initial commits. However, it is extremely time-
consuming. We leave the exploration of leveraging delta-
debugging in HSFL as our future work.

1.00 - — 0.8 - 0.8-

0.75 - 0.6 - 0.6-

0.25 L 0.2 0.2 ¢ ¢
0.00 - —J 0.0 - 0.0- ——1
MAP MRR MAP MRR MAP MRR
(a) Subsequent (b) Initial (c) Likely

Fig. 19: Performance of HSFL Evaluated on Different Types of

Inducing Commits. The Green Bar Denotes HSFL and The
White Bar Denotes SBFL

Initiak } | . }

00 0000 +.
10° 1

4

Likely-

Y .

10 10

i 2
1
The Number of Modified Statements

10 10* ©

Fig. 20: The Sizes of Different Inducing Commits. The Size
is Measured by the Number of Modified Statements

These results indicate that HSFL is suggested to be
applied to locate buggy statements for regression bugs
whose bug-inducing commits can be precisely identified as
“subsequent” commits. However, it is not suggested to be
applied when only a range of likely-inducing commits can
be identified.

6.3 Effects of Multiple Faults

Large real-world programs, such as those subjects in the
Defects4] dataset, always contain multiple faults at the
same time, some of which might influence with each other.
Although it is often the case, a recent study [11] indicate that
there is no need to correct for this when performing fault
localization, as long as the failing tests only reveal one defect
at a time. Despite that, we are still curious about whether the
performance of HSFL will be affected, when multiple faults
coexist in the same program. Therefore, in this section, we
investigate the effects of multiple faults.

We have extended the subject programs in the Defects4]
dataset to extract programs with multiple faults following

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

the practice of an existing study [35]. Be noted that we only
investigate the effects of two faults at the same time in this
study, and the investigation on a larger cardinality of faults
is left as our future work. Actually, different faulty programs
in Defects4] of a same project are different versions of the
project. Therefore, to create a subject with two faults, we
check whether any of two faults in the Defects4] dataset
coexist in the same version of a same project (both of the
faults have been introduced but have not been fixed). If so,
we include it in our experimental subject. For instance, in the
version before commit #a92450e of project Time, both bug
Time-19 and Time-20 coexist in the system. This process
was conducted manually. In total, we extracted 309 versions
that contain two observable distinct faults. To evaluate the
performance of HSFL under such scenarios, we combined
the bug-revealing tests of both of these two bugs (suppose
we cannot distinguish between the bug-revealing tests of
these bugs). Then, we run our tool HSFL to see how well
can it rank all the buggy statements. Finally, we compare
the performance of HSFL under such scenarios with that
obtained via running HSFL for each of the bug individually,
in terms of MAP and MRR.

Figure 21 shows the results of the extracted 309 versions.
When locating a single fault at a time, HSFL achieves an
average MAP of 0.244 and MRR of 0.281. When locating
multiple faults (two faults in our experiment) at a time,
HSFL achieves an average MAP of 0.239 and MRR of 0.268.
On average, the MAP has been decreased by 1.19% and that
value is 4.40% for MRR when working on a scenario con-
taining multiple faults. However, no significant differences
have been observed (p-value > 0.05) for the performance of
HSFL under these two experimental settings as shown in
Figure 21. Such results indicate that our proposed technique
is able to handle multiple faults effectively and it does not
lead to significant deterioration in its performance.

VIRR L ©0.281 | lue = 0.537
- p-value = 0.
Group
0.268 }7
{] hd B Multiple
B Single
] | v 0.244 |
MAP- l p-value = 0.557
{ 1 20239 |
0.00 0.25 0.50 0.75 1.00

Fig. 21: The Performance of HSFL in Terms of MAP and
MRR in the Presence of Multiple Faults

6.4 Overhead of HSFL

Table 8 shows the overheads of HSFL in processing a bug.
In the table, each column represents different subjects while
each row represents the different steps in HSFL. Specifically,
step 1 refers to identifying bug-inducing commits; step 2
refers to constructing historical spectrum and step 3 refers
to ranking suspicious elements. On average, it takes HSFL
less than three minutes in total to obtain the final rank-
ings of all the suspicious statements. This indicates that
HSFL is practical in locating faults for real-world projects.
The major overhead comes from the first step to identify
bug-inducing commits. Recompiling the project’s previous

17

versions and rerunning the bug-revealing tests on those
versions contribute to overall costs of this step. Therefore,
the size of the project (i.e., number of source files) and
the number of historical commits (since we need to search
among the whole history using binary search) affect the
time cost of this step significantly. The five projects from
the DEFECTS4] benchmark are not large in their scales.
A version of these projects can be compiled successfully
in around 10 seconds. Therefore, the overhead of HSFL
is not high for these projects. It will take HSFL longer
time to identify the bug-inducing commits for projects with
larger sizes. However, identifying bug-inducing commits is
a common procedure for debugging in practice as confirmed
by our observations in Section 2. Therefore, bug-inducing
commits can be directly leveraged by HSFL once it has been
identified by developers. Actually, similar to static analysis,
which usually takes quite a long time, a natural fit of our
approach to the development cycles is the nightly build
cycle [69], [70]. A typical nightly build and test cycle takes 5-
10 hours. Therefore, it is applicable to deploy our approach.

TABLE 8: HSFL Overheads in Seconds

Lang Math Chart Time Closure Average
Stepl 4546 76.56 39.23 15796 147.84 93.41
Step 2 357 3191 4.53 32.20 182.80 51.00
Step 3 0.01 0.01 0.01 0.01 0.01 0.01

Step 1 refers to identifying bug-inducing commits;
Step 2 refers to constructing the historical spectrum
Step 3 refers to ranking suspicious elements.

6.5 Threats to Validity

One potential threat to validity is the generality of the
projects used in our evaluation, which means that our ex-
perimental results may not be generalized to other dataset.
Specifically, the distributions of different types of bug-
inducing commits for different projects might be diver-
gent as shown in Figure 18, and this will affect the final
performance of HSFL. However, real-world open-source
projects with different characteristics used in our evaluation,
provided by benchmark DEFECTS4], may at least partially
mitigate the risk of over-generalization. Besides, for those
projects with different distributions of inducing commits
(e.g., likely-inducing commits ranging from 0.0% to 51.9%),
HSFL can achieve significantly better results compared with
SBFL on average for all of them (as shown in Sections 5.1
and 6.2). This reflects the generality of HSFL in improving
the effectiveness of existing FL techniques. Evaluating HSFL
on more subjects (e.g., projects from industry) and other
languages is left for our future work.

Another threat is that our survey presented in Section
2.1 was only conducted at Microsoft, the findings of which
might not be generalized to other companies or the open
source communities. However, the empirical survey is not
the major contribution of this study. The results of the em-
pirical survey demonstrated the usefulness of version his-
tories, especially the bug-inducing commits, in debugging
activities. This inspired us to leverage the version history in
fault localization. Such findings have also been echoed by
the observations from the open source communities as dis-
cussion in Section 2.1. Specifically, developers from the open

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

source community also often look for the information of
bug-inducing commits when debugging. Such observations
reflect the generality of our empirical survey conducted at
Microsoft.

7 RELATED WORK
7.1 Automated Fault Localization

Various automated fault localization techniques have been
proposed [2], such as spectrum-based techniques (e.g.,
[12], [14], [15], [71]), mutation-based techniques (e.g., [3],
[57], [72]), slice-based techniques (e.g., [73], [74]), machine-
learning based techniques (e.g., [75]), program-state based
techniques (e.g., [60]), data-augmented (e.g., [76]), feedback-
based (e.g., [77]), and qualitative reasoning-based tech-
niques (e.g., [78]) , which are the most related techniques
with our proposed technique. Spectrum-based techniques
leverage the test coverage information obtained via exe-
cuting the associated test suite to rank suspicious code
elements. Substantial existing SBFL techniques focus on
refining fault locating formulae to improve their effective-
ness [30], [32], [33], [34], [35]. Mutation-based techniques
(e.g., [3], [57], [72]) utilize the test results obtained via
mutating the program to improve the effectiveness of fault
localization. Slice-based techniques (e.g., [73], [74]) leverage
static or dynamic program dependencies to rank suspi-
cious code elements. Machine-learning based techniques
combine different FL techniques with machine learning
techniques (e.g., [75]). Data-augmented techniques utilize
defect prediction, which is built based on version histories,
to point out those code elements that are more likely to be
buggy in fault localization [76]. Feedback-based approach
is able to leverage past diagnosis experience with the aim
to improve fault localization performance [77]. Qualitative
reasoning-based techniques leverage qualitative reasoning
to augment the spectrum information obtained in SBFL to
boost the final performance [78]. Specifically, it qualitatively
partitions system components, and treats each qualitative
state as a new spectrum component to be used in locating
faults [78]. We have compared HSFL with most of the
above-mentioned techniques as presented in Section 5.5.
Data-augmented technique, feedback-based techniques and
qualitative reasoning-based technique are not included in
our evaluation in Section 5.5, since they are not applicable
to our experimental setting, which targets at locating bugs
automatically at the fine granularity of the statement level.
Data-augmented techniques work at the source file level
[76]. This is because, those features, which are extracted
(e.g., number of public methods, number of other classes
referenced) to augment the spectrum information, are not
applicable to measure a single statement in our setting. The
feedback-back technique needs to select modeling variables,
which is an essential step in the their approach but requires
to be done manually [76]. Besides, the authors evaluated
the feedback-based technique on artificial faults (i.e., syn-
thesized or manually injected) [76], while our evaluations
were performed on real faults extracted from real large-scale
projects. Qualitative reasoning-based technique works at the
method level [78], and it leverages the parameter and return
values of a method to partition spectrum components. Un-
fortunately, such an approach (i.e., leveraging parameters

18

and return values) cannot be applied to components such as
statements. Although these approaches cannot be directly
applied to compare with HSFL, we can still incorporate the
insights of these approaches to advance the performance of
HSFL. Therefore, we left it as our important future work.

There are also other work focused on preprocessing test
cases to improve the effectiveness of SBFL [12], [21], [79],
[80], [81], [82]. For instance, Xuan et al. [79] proposed test
case purification to reduce failing test cases for better perfor-
mance. It first produced a set of single-assertion failing test
cases, and then removed the irrelevant statements through
dynamic slicing in them. Finally, it applied traditional SBFL
to rank suspicious statements. Other researches are pro-
posed with the aim to improve the performance of fault
localization in terms of other aspects. For instance, Zhang
et al. proposed to differentiate the contributions of different
test cases using the PageRank algorithm [12], which is used
to recompute the spectrum information to improving the
effectiveness of SBFL. Furthermore, other works integrated
more information to SBFL besides test coverage to improve
its effectiveness [13], [80], [83], [84], [85], [86], [87], [88].
Sohn and Yoo [13] introduced code and change metrics (e.g.,
size and age) that have been widely-used in defect predic-
tion to SBFL to improve its effectiveness. More specifically,
based on the suspiciousness values from traditional SBFL
and these source-code metrics, they utilized learning-to-
rank techniques to rank suspicious source methods. Lucia
et al. also proposed Fusion Localizer, which leverage the
diversity of existing different SBFL techniques to better
localize bugs using data fusion techniques [71]. However,
all these techniques focused on the target buggy version
to improve FL effectiveness (i.e., building coverage based
spectrum on this single version). Different from them, HSFL
is the first one to leverage the information of version histo-
ries for better fault localization. In particular, HSFL builds
spectrum along the version histories, which is orthogonal
to the traditional execution-based spectrum on the buggy
version. Our experimental results demonstrated that the
Histrum and the coverage based spectrum complement well
to each other.

7.2 Mining Version Histories

Identifying Bug-Inducing Commits: SZZ-algorithm [89], [90]
identifies bug-inducing commits by blaming the changed
lines in the bug-fixing commits. Essentially, it assumes
that the lines changed the bug-fixing commits contain the
fault statements, and leverages git blame to identify which
commits changed these lines previously. However, the SZZ
algorithm is not applicable in our application scenario since
it assumes the information of bug-fixing commits (i.e., the
buggy statements) is available. On the contrary, the goal of
our approach HSFL is to identify those buggy statements.
If the bug-fixing commits are available, in which case, the
buggy locations of the bug are known, then there is no need
to launch our approach for fault localization. As a result,
we resort to software testing to identify the bug-inducing
commits. Besides, it has been reported that the bug-inducing
commits identified by SZZ is not precise recently [25], [91],
[92]. Specifically, it is reported that the SZZ algorithm can
only achieve an average recall of 68.7%. LOCUS is later pro-

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

Transactions on Software Engineering

posed to identify the bug-inducing commits based on bug-
reports using information retrieval techniques [23]. Change-
Locator identifies bug-inducing commits based a bucket of
crash reports [24]. These techniques work in the case where
the bug-revealing tests are not available or the efforts of
running test suite is extremely high. Delta debugging is
another related work that aims at identifying the minimum
set of changes inducing a failure [68]. HSFL identifies bug-
inducing commits precisely via running the bug-revealing
tests on the complete version history using binary search.
This strategy is also adopted by a recent work to identify
regression bugs [25].

Tracing Source Code Evolution: Understanding the evolu-
tion of source code is important for developers. Girba et
al.proposed a meta-model to represent the history of code
entities at different levels of granularity (e.g., class, method)
[93]. Zimmermann et al. proposed annotation graph to iden-
tify line changes across several versions. However, code
differences between two versions are maintained by ver-
sion control systems at the granularity of hunks (i.e., a
block of code elements) instead of lines. Therefore, precisely
tracking the mappings at the granularity of statement level
is challenging. History slicing techniques are proposed to
tackle this issue [29], [94], [95]. Specifically, it approaches
the line mapping problem as the problem of finding the
minimum matching of a weighted bipartite graph, and
then leverages the Kuhn-Munkres algorithm [46] to find
the optimum matching. The historical evolution of source
code has also been leveraged to enhance the performance of
automated program repair techniques [96]. HSFL leverages
history slicing to construct the historical spectrum based
on the identified bug-inducing commits. To the best of our
knowledge, historical spectrum is novel to FL. It is another
dimension information of spectrum, which complements
well to different families of fault localization techniques.

8 CONCLUSION

We present a novel FL technique, HSFL, in this paper,
which leverages the information of version histories in fault
localization. The key novelty of HSFL, which allows it to
locate more bugs compared with SBFL, is the historical
spectrum (i.e., Histrum). Histrum is constructed by tracing
the evolution of bug-inducing commits along version his-
tories and is another dimension of spectrum orthogonal to
the conventional coverage based spectrum used in SBFL.
It reflects the root causes of bugs directly and breaks the
tie issues of conventional SBFL significantly. We evaluate
HSFL on the benchmark DEFECTS4], and the results show
that HSFL outperforms SBFL significantly. Specifically, it
locates and ranks the buggy statement at Top-1 for 77.8%
more bugs compared with SBFL, and 33.9% more bugs
for Top-5. Besides SBFL, our evaluation results also show
that our proposed approach can outperform and boost the
performance of other six families of FL techniques. In the
future, we plan to design better techniques specific for our
proposed novel model, Histrum, to further improve the
effectiveness of HSFL.

ACKNOWLEDGMENT
Rongxin Wu is the corresponding author. We thank anony-
mous reviewers for their constructive comments. This work

19

is supported by the Hong Kong RGC/GRF Grant 16202917,
the Hong Kong PhD Fellowship Scheme and the National
Natural Science Foundation of China (Grant No. 61902329).

REFERENCES

[1] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen,
“Reversible debugging software,” Judge Bus. School, Univ. Cam-
bridge, Cambridge, UK, Tech. Rep, 2013.

[2] W. E. Wong and V. Debroy, “A survey of software fault localiza-
tion,” Department of Computer Science, University of Texas at Dallas,
Tech. Rep. UTDCS-45, vol. 9, 2009.

[3] S. Hong, B. Lee, T. Kwak, Y. Jeon, B. Ko, Y. Kim, and M. Kim,
“Mutation-based fault localization for real-world multilingual pro-
grams (t),” in Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on. 1EEE, 2015, pp. 464—-475.

[4] S. Artzi,]. Dolby, E. Tip, and M. Pistoia, “Directed test generation
for effective fault localization,” in Proceedings of the 19th interna-
tional symposium on Software testing and analysis. ACM, 2010, pp.

[5] X. Xia, L. Bao, D. Lo, and S. Li, “” automated debugging con-
sidered harmful” considered harmful: A user study revisiting
the usefulness of spectra-based fault localization techniques with
professionals using real bugs from large systems,” 2016.

[6] P.S.Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners” expectations
on automated fault localization,” in Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis. ACM, 2016, pp.
165-176.

[7] M. Wen,]J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-
aware patch generation for better automated program repair.”
ICSE, 2018.

[8] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Software quality journal, vol. 21, no. 3,
pp. 421-443, 2013,

[9] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out of
105 bugs for 8 each,” in Software Engineering (ICSE), 2012 34th
International Conference on. 1EEE, 2012, pp. 3-13.

[10] Y. Qi, X. Mao, Y. Lei, and C. Wang, “Using automated pro-
gram repair for evaluating the effectiveness of fault localization
techniques,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis. ACM, 2013, pp. 191-201.

[11] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localiza-
tion,” in Proceedings of the 39th International Conference on Software
Engineering. 1EEE Press, 2017, pp. 609-620.

[12] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-
based fault localization using pagerank,” in Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, 2017, pp. 261-272.

[13] J. Sohn and S. Yoo, “Fluccs: using code and change metrics to im-
prove fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2017, pp. 273-283.

[14] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy
of spectrum-based fault localization,” in Testing: Academic and
Industrial Conference Practice and Research Techniques-MUTATION,
2007. TAICPART-MUTATION 2007. 1EEE, 2007, pp. 89-98.

[15] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2012, pp. 378-381.

[16] X. Xie, F-C. Kuo, T. Y. Chen, S. Yoo, and M. Harman, “Provably
optimal and human-competitive results in sbse for spectrum based
fault localisation,” in International Symposium on Search Based Soft-
ware Engineering. Springer, 2013, pp. 224-238.

[17] A.Riboira, R. Abreu, and R. Rodrigues, “An opengl-based eclipse
plug-in for visual debugging,” in Proceedings of the 1st Workshop on
Developing Tools as Plug-ins. ACM, 2011, pp. 60-60.

[18] A. Riboira, R. Rodrigues, R. Abreu, and J. Campos, “Integrating
interactive visualizations of automatic debugging techniques on
an integrated development environment,” International Journal of
Creative Interfaces and Computer Graphics (IJCICG), vol. 3, no. 2, pp.
42-59, 2012.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

(40]

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Software Engineering

L. Inozemtseva and R. Holmes, “Coverage is not strongly cor-
related with test suite effectiveness,” in Proceedings of the 36th
International Conference on Software Engineering. ~ACM, 2014, pp.
435-445.
J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, and B. Xie, “How do
assertions impact coverage-based test-suite reduction?” in Software
Testing, Verification and Validation (ICST), 2017 IEEE International
Conference on. 1EEE, 2017, pp. 418-423.
Y. Yu, J. Jones, and M. J. Harrold, “An empirical study of the
effects of test-suite reduction on fault localization,” in Software
Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference
on. IEEE, 2008, pp. 201-210.
X. Xu, V. Debroy, W. Eric Wong, and D. Guo, “Ties within fault
localization rankings: exposing and addressing the problem,”
International Journal of Software Engineering and Knowledge Engineer-
ing, vol. 21, no. 06, pp. 803-827, 2011.
M. Wen, R. Wu, and S.-C. Cheung, “Locus: Locating bugs from
software changes,” in Automated Software Engineering (ASE), 2016
31st IEEE/ACM International Conference on. IEEE, 2016, pp. 262—
273.
R. Wu, M. Wen, S.-C. Cheung, and H. Zhang, “Changelocator:
locate crash-inducing changes based on crash reports,” Empirical
Software Engineering, pp. 1-35, 2017.
M. Béhme and A. Roychoudhury, “Corebench: Studying complex-
ity of regression errors,” in Proceedings of the 2014 International
Symposium on Software Testing and Analysis. ACM, 2014, pp. 105-
115.
“Gee-79286,” https:/ /gec.gnu.org/bugzilla/show_bug.cgi?id=
79286, 2018, accessed: 2018-01-12.
“Solr-2606,” https:/ /issues.apache.org/jira/browse/SOLR-2606,
2018, accessed: 2018-01-12.
K. Herzig and A. Zeller, “The impact of tangled code changes,”
in Mining Software Repositories (MSR), 2013 10th IEEE Working
Conference on. 1EEE, 2013, pp. 121-130.
F. Servant and J. A. Jones, “History slicing: assisting code-
evolution tasks,” in Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering. ACM,
2012, p. 43.
R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund, “A
practical evaluation of spectrum-based fault localization,” Journal
of Systems and Software, vol. 82, no. 11, pp. 1780-1792, 2009.
R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis. ACM, 2014, pp. 437-440.
J. A. Jones and M.]. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering. ACM, 2005, pp. 273-282.
W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for ef-
fective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290-308, 2014.
L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Transactions on software engineer-
ing and methodology (TOSEM), vol. 20, no. 3, p. 11, 2011.
R. Abreu, P. Zoeteweij, and A.]. Van Gemund, “Spectrum-based
multiple fault localization,” in Automated Software Engineering,
2009. ASE’09. 24th IEEE/ACM International Conference on. IEEE,
2009, pp. 88-99.
Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: an exploratory study in
industry,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering. ACM, 2012,
.51
g. Schroter, A. Schroter, N. Bettenburg, and R. Premraj, “Do
stack traces help developers fix bugs?” in 2010 7th IEEE Working
Conference on Mining Software Repositories (MSR 2010). IEEE, 2010,
pp. 118-121.
N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and
T. Zimmermann, “What makes a good bug report?” in Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations
of software engineering. ACM, 2008, pp. 308-318.
S. Breu, R. Premraj,]. Sillito, and T. Zimmermann, “Information
needs in bug reports: improving cooperation between developers
and users,” in Proceedings of the 2010 ACM conference on Computer

supgorted cooperative work. ACM, 2010, pﬁ. 301-310.
M. Bohme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and

A. Zeller, “Where is the bug and how is it fixed? an experiment

[41]

[42]

[43]

[44]

[45]

[46]
[47]

(48]

[49]

(50]
[51]
[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

20

with practitioners,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ACM, 2017, pp. 117-128.
“Solr-2606,” https:/ /issues.apache.org/jira/browse/SOLR-8026,
2018, accessed: 2018-01-12.

A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary,
and B. Spates, “When a patch goes bad: Exploring the properties
of vulnerability-contributing commits,” in 2013 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measure-
ment. 1EEE, 2013, pp. 65-74.

C. Couder, “Fighting regressions with git bisect,” vol. 4, no. 5,
2008.

J.-R. Falleri, FE. Morandat, X. Blanc, M. Martinez, and M. Monper-
rus, “Fine-grained and accurate source code differencing,” in Pro-
ceedings of the 29th ACM/IEEE international conference on Automated
software engineering. ACM, 2014, pp. 313-324.

V. L. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8,
1966, pp. 707-710.

H. W. Kuhn, “The hungarian method for the assignment prob-
lem,” Naval Research Logistics (NRL), vol. 2, no. 1-2, pp. 83-97, 1955.
M. Martinez and M. Monperrus, “Astor: A program repair library
for java,” in Proceedings of ISSTA, Demonstration Track, 2016.

J. Xuan, M. Martinez, E. Demarco, M. Clément, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic
repair of conditional statement bugs in java programs,” 2016.

S. Shamshiri, R. Just,]. M. Rojas, G. Fraser, P. McMinn, and
A. Arcuri, “Do automatically generated unit tests find real faults?
an empirical study of effectiveness and challenges (t),” in Auto-
mated Software Engineering (ASE), 2015 30th IEEE/ACM International
Conference on. 1EEE, 2015, pp. 201-211.

E. M. Voorhees et al., “The trec-8 question answering track report.”
in Trec, vol. 99, 1999, pp. 77-82.

H. Schiitze, C. D. Manning, and P. Raghavan, Introduction to
information retrieval. Cambridge University Press, 2008, vol. 39.
C. D. Manning and H. Schiitze, Foundations of statistical natural
language processing. MIT Press, 1999, vol. 999.

F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based
fault locators,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis. ACM, 2013, pp. 314-324.

W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect
of test set minimization on fault detection effectiveness,” in Pro-
ceedings of the 17th international conference on Software engineering.
ACM, 1995, pp. 41-50.

D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empir-
ical study of fault localization families and their combinations,”
IEEE Transactions on Software Engineering, 2019.

M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “An empirical
analysis of the influence of fault space on search-based automated
program repair,” arXiv preprint arXiv:1707.05172, 2017.

S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mu-
tating faulty programs for fault localization,” in Software Testing,
Verification and Validation (ICST), 2014 IEEE Seventh International
Conference on. 1EEE, 2014, pp. 153-162.

M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault
localization,” Software Testing, Verification and Reliability, vol. 25, no.
5-7, pp. 605-628, 2015.

H. Pan and E. H. Spafford, “Heuristics for automatic localization
of software faults,” World Wide Web, 1992.

X. Zhang, N. Gupta, and R. Gupta, “Locating faults through auto-
mated predicate switching,” in Proceedings of the 28th international
conference on Software engineering. ACM, 2006, pp. 272-281.

J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based
on bug reports,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 14-24.

F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu, “Bug-
cache for inspections: hit or miss?” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering. ACM, 2011, pp. 322-331.

J. Xuan and M. Monperrus, “Learning to combine multiple rank-
ing metrics for fault localization,” in 2014 IEEE International Con-
ference on Software Maintenance and Evolution. IEEE, 2014, pp.
191-200.

H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals
of mathematical statistics, pp. 50-60, 1947.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2948158, IEEE

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

(81]

[82]

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Software Engineering

C. Manning, P. Raghavan, and H. Schiitze, “Introduction to infor-
mation retrieval,” Natural Language Engineering, vol. 16, no. 1, pp.
100-103, 2010.

X.-B. D. Le, L. Bao, D. Lo, X. Xia, S. Li, and C. Pasareanu, “On
reliability of patch correctness assessment,” in Proceedings of the
41st International Conference on Software Engineering. 1EEE Press,
2019, pp. 524-535.

T.-M. Kuo, C.-P. Lee, and C.-J. Lin, “Large-scale kernel ranksvm,”
in Proceedings of the 2014 SIAM international conference on data
mining. SIAM, 2014, pp. 812-820.

A. Zeller, “Yesterday, my program worked. today, it does not.
why?” in ACM SIGSOFT Software engineering notes, vol. 24, no. 6.
Springer-Verlag, 1999, pp. 253-267.

N. Ayewah and W. Pugh, “The google findbugs fixit,” in Pro-
ceedings of the 19th international symposium on Software testing and
analysis. ACM, 2010, pp. 241-252.

S. McPeak, C.-H. Gros, and M. K. Ramanathan, “Scalable and
incremental software bug detection,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering. ~ACM, 2013,
pp- 554-564.

D. Lo, X. Xia et al., “Fusion fault localizers,” in Proceedings of
the 29th ACM/IEEE international conference on Automated software
engineering. ACM, 2014, pp. 127-138.

M. Delahaye, L. C. Briand, A. Gotlieb, and M. Petit, “util:
Mutation-based statistical test inputs generation for automatic
fault localization,” in Software Security and Reliability (SERE), 2012
IEEE Sixth International Conference on. 1EEE, 2012, pp. 197-206.
H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Debugging
with dynamic slicing and backtracking,” Software: Practice and
Experience, vol. 23, no. 6, pp. 589-616, 1993.

X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimental eval-
uation of using dynamic slices for fault location,” in Proceedings
of the sixth international symposium on Automated analysis-driven
debugging. ACM, 2005, pp. 33—-42.

L. C. Briand, Y. Labiche, and X. Liu, “Using machine learning to
support debugging with tarantula,” in ISSRE, 2007, pp. 137-146.
A. Elmishali, R. Stern, and M. Kalech, “Data-augmented software
diagnosis,” in Twenty-Eighth IAAI Conference, 2016.

N. Cardoso and R. Abreu, “A kernel density estimate-based
approach to component goodness modeling,” in Twenty-Seventh
AAAI Conference on Artificial Intelligence, 2013.

A. Perez, R. Abreu, and I. HASLab, “Leveraging qualitative rea-
soning to improve sfl.”

J. Xuan and M. Monperrus, “Test case purification for improving
fault localization,” in Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. ACM,
2014, pp. 52-63.

D. Hao, T. Xie, L. Zhang, X. Wang, J. Sun, and H. Mei, “Test input
reduction for result inspection to facilitate fault localization,”
Automated software engineering, vol. 17, no. 1, p. 5, 2010.

S. Yoo, M. Harman, and D. Clark, “Fault localization prioriti-
zation: Comparing information-theoretic and coverage-based ap-
proaches,” TOSEM, vol. 22, no. 3, p. 19, 2013.

B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for
efficient fault localization,” in Proceedings of the 28th international
conference on Software engineering. ACM, 2006, pp. 82-91.

(83]

(84]

(85]

(86]

(87]

(88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

21

E. Alves, M. Gligoric, V. Jagannath, and M. d’Amorim, “Fault-
localization using dynamic slicing and change impact analysis,”
in Automated Software Engineering (ASE), 2011 26th IEEE/ACM
International Conference on. 1EEE, 2011, pp. 520-523.

T.-D. B Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-
rank based fault localization approach using likely invariants,” in
Proceedings of the 25th International Symposium on Software Testing
and Analysis. ACM, 2016, pp. 177-188.

R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, “Lightweight
fault-localization using multiple coverage types,” in Proceedings
of the 31st International Conference on Software Engineering. IEEE
Computer Society, 2009, pp. 56—66.

W. Masri, R. A. Assi, F. Zaraket, and N. Fatairi, “Enhancing fault
localization via multivariate visualization,” in Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth International Con-
ference on. 1EEE, 2012, pp. 737-741.

W. Masri and R. A. Assi, “Prevalence of coincidental correctness
and mitigation of its impact on fault localization,” ACM trans-
actions on software engineering and methodology (TOSEM), vol. 23,

no. 1, p. 8, 2014.
C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei,

“Boosting bug-report-oriented fault localization with segmenta-
tion and stack-trace analysis,” in 2014 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 1EEE, 2014, pp.
181-190.

S. Kim, T. Zimmermann, K. Pan, E. James Jr ef al., “Automatic
identification of bug-introducing changes,” in Automated Software
Engineering, 2006. ASE’06. 21st IEEE/ACM International Conference
on. IEEE, 2006, pp. 81-90.

J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” in ACM sigsoft software engineering notes, vol. 30,
no. 4. ACM, 2005, pp. 1-5.

D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho,
and A. E. Hassan, “A framework for evaluating the results of
the szz approach for identifying bug-introducing changes,” IEEE
Transactions on Software Engineering, vol. 43, no. 7, pp. 641-657,
2017.

M. Wen, R. Wu, Y. Liu, Y. Tian, X. Xie, S.-C. Cheung, and Z. Su,
“Exploring and exploiting the correlations between bug-inducing
and bug-fixing commits,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, 2019, pp. 326-
337.

T. Girba and S. Ducasse, “Modeling history to analyze software
evolution,” Journal of Software: Evolution and Process, vol. 18, no. 3,
pp. 207236, 2006.

Y. Li, C. Zhu, J. Rubin, and M. Chechik, “Precise semantic his-
tory slicing through dynamic delta refinement,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2016, pp. 495-506.

F. Servant and]. A. Jones, “Fuzzy fine-grained code-history anal-
ysis,” in Proceedings of the 39th International Conference on Software
Engineering. 1EEE Press, 2017, pp. 746-757.

X. B. D. Le, D. Lo, and C. Le Goues, “History driven program
repair,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1. IEEE, 2016,
pp. 213-224.

