
30

Practical Accuracy Estimation for Efficient Deep Neural

Network Testing

JUNJIE CHEN, College of Intelligence and Computing, Tianjin University, China

ZHUO WU, Tianjin International Engineering Institute, Tianjin University, China

ZAN WANG and HANMO YOU, College of Intelligence and Computing, Tianjin University, China

LINGMING ZHANG, Department of Computer Science, The University of Texas at Dallas, USA

MING YAN, College of Intelligence and Computing, Tianjin University, China

Deep neural network (DNN) has become increasingly popular and DNN testing is very critical to guarantee

the correctness of DNN, i.e., the accuracy of DNN in this work. However, DNN testing suffers from a serious

efficiency problem, i.e., it is costly to label each test input to know the DNN accuracy for the testing set,

since labeling each test input involves multiple persons (even with domain-specific knowledge) in a manual

way and the testing set is large-scale. To relieve this problem, we propose a novel and practical approach,

called PACE (which is short for Practical ACcuracy Estimation), which selects a small set of test inputs that

can precisely estimate the accuracy of the whole testing set. In this way, the labeling costs can be largely

reduced by just labeling this small set of selected test inputs. Besides achieving a precise accuracy estimation,

to make PACE more practical it is also required that it is interpretable, deterministic, and as efficient as

possible. Therefore, PACE first incorporates clustering to interpretably divide test inputs with different testing

capabilities (i.e., testing different functionalities of a DNN model) into different groups. Then, PACE utilizes

the MMD-critic algorithm, a state-of-the-art example-based explanation algorithm, to select prototypes (i.e.,

the most representative test inputs) from each group, according to the group sizes, which can reduce the

impact of noise due to clustering. Meanwhile, PACE also borrows the idea of adaptive random testing to

select test inputs from the minority space (i.e., the test inputs that are not clustered into any group) to achieve

great diversity under the required number of test inputs. The two parallel selection processes (i.e., selection

from both groups and the minority space) compose the final small set of selected test inputs. We conducted

an extensive study to evaluate the performance of PACE based on a comprehensive benchmark (i.e., 24 pairs

of DNN models and testing sets) by considering different types of models (i.e., classification and regression

models, high-accuracy and low-accuracy models, and CNN and RNN models) and different types of test inputs

(i.e., original, mutated, and automatically generated test inputs). The results demonstrate that PACE is able

to precisely estimate the accuracy of the whole testing set with only 1.181%∼2.302% deviations, on average,

significantly outperforming the state-of-the-art approaches.

This work was partially supported by the National Natural Science Foundation of China under Grant No. 61872263, Intelli-

gent Manufacturing Special Fund of Tianjin under Grant No. 20191012, Innovation Research Project of Tianjin University

under Grant No. 2020XZC-0042. This work was also partially supported by National Science Foundation under Grant No.

CCF-1763906 and Alibaba.

Authors’ addresses: J. Chen, Z. Wang (corresponding author), H. You, and M. Yan, College of Intelligence and Com-

puting, Tianjin University, Tianjin, 300350, China; emails: {junjiechen, wangzan, youhanmo, yanming}@tju.edu.cn; Z.

Wu, Tianjin International Engineering Institute, Tianjin University, Tianjin, 300350, China; email: wuzhuo@tju.edu.cn;

L. Zhang, Department of Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA; email: ling-

ming.zhang@utdallas.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1049-331X/2020/10-ART30 $15.00

https://doi.org/10.1145/3394112

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3394112

30:2 J. Chen et al.

CCS Concepts: • Software and its engineering → Software testing and debugging; • Computer sys-

tems organization → Neural networks;

Additional Key Words and Phrases: Deep neural network testing, test input selection, labeling, test optimiza-

tion

ACM Reference format:

Junjie Chen, Zhuo Wu, Zan Wang, Hanmo You, Lingming Zhang, and Ming Yan. 2020. Practical Accuracy

Estimation for Efficient Deep Neural Network Testing. ACM Trans. Softw. Eng. Methodol. 29, 4, Article 30

(October 2020), 35 pages.

https://doi.org/10.1145/3394112

1 INTRODUCTION

In recent years, deep neural network (DNN) has been widely studied in many domains and has
gained great success in practice, such as autonomous driving cars [11], face recognition [93], med-
ical diagnosis [69], aircraft collision avoidance systems [43], and software engineering [17, 18, 52,
114]. Unfortunately, DNN still suffers from bugs like traditional software systems [41, 60–62, 73,
103], which can result in serious consequences, even disasters in safety-critical domains. For ex-
ample, a pedestrian was killed by an Uber autonomous driving car in Tempe, Arizona in 2018.1

Also, a Tesla Model S in autopilot mode crashed into a parked fire truck with lights flashing on a
California freeway in 2018.2 Therefore, guaranteeing the quality of DNN is very critical.

In practice, DNN testing is one of the most effective ways to guarantee the quality of DNN.
However, it suffers from two main challenges. First, it is difficult to ensure whether the used test
inputs are sufficient enough to test DNN, since the practical scenario is very complex and change-
able. To solve this challenge, researchers have paid much attention by proposing various metrics
to measure the adequacy of test inputs [54, 60, 73] or designing various approaches to generating
adversarial inputs [63, 70, 103]. Second, it is costly to label these test inputs to know the DNN ac-
curacy for the testing set due to the following reasons: (1) Manual labeling is the main method, and
usually labeling one test input involves multiple persons to ensure the labeling correctness; (2) the
testing set is large-scale; (3) in many cases, labeling also relies on domain-specific knowledge, and
thus it makes labeling more expensive by employing the persons with the domain-specific knowl-
edge. According to our industrial partners, the second challenge is even more troublesome than
the first one, but currently few efforts have been devoted to relieving this challenge, which is the
target of our work.

Recently, Li et al. [55] proposed the first approach, called Cross Entropy-based Sampling (CES),
which selects a small set of test inputs that can precisely estimate the accuracy of the whole testing
set. In this way, the labeling cost can be reduced by just labeling this small set of test inputs.
More specifically, CES conducts selection by minimizing the cross entropy between the selected
set and the whole testing set. Although CES has been evaluated to be effective in the existing
study [55], it suffers from several limitations in practice. First, the selection result produced by
CES does not have good interpretability. It is hard to explain the relation between the selected
test inputs and the testing goal (e.g., testing various functionalities of a DNN model). Second,
CES involves randomness, and thus it can produce different selection results at different runs for
the same DNN model and the achieved effectiveness by different selection results has fluctuation
to some degree. Third, the effectiveness of CES still needs to be improved. Therefore, a practical
approach to selecting a small number of test inputs to precisely estimate the accuracy of the whole
testing set is still urgently desirable.

1https://www.vice.com/en_us/article/9kga85/uber-is-giving-up-on-self-driving-cars-in-california-after-deadly-crash.
2https://www.newsweek.com/autonomous-tesla-crashes-parked-fire-truck-california-freeway-789177.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

https://doi.org/10.1145/3394112
https://www.vice.com/en_us/article/9kga85/uber-is-giving-up-on-self-driving-cars-in-california-after-deadly-crash
https://www.newsweek.com/autonomous-tesla-crashes-parked-fire-truck-california-freeway-789177

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:3

To improve the efficiency of DNN testing, in this article, we propose a novel and practical
approach for test input selection to reducing labeling cost, called PACE (Practical ACcuracy
Estimation). To make PACE practical, it is required that PACE is interpretable, deterministic, and
efficient as much as possible. Moreover, it is required that PACE is able to select a small set of
test inputs to precisely estimate the accuracy of the whole testing set. To satisfy the above two re-
quirements, PACE first clusters test inputs into different groups by identifying effective features,
to discriminate test inputs with different testing capabilities (i.e., testing different functionalities
of a DNN model). This is also a step to augment the interpretability. Then, PACE selects test inputs
from each group to make this small set to be able to test various functionalities of a DNN model.
Since it is hard to perfectly discriminate test inputs with different testing capabilities via clustering,
we should select the test inputs that best represent the testing capability of the group to bypass
the impact of noise in each group. Here, PACE adopts the MMD-critic algorithm [44], a state-of-
the-art example-based explanation algorithm (which is used for the interpretability of a machine
learning model including classification and clustering), to select prototypes (i.e., the most repre-
sentative test inputs) from each group. This is another step to further augment the interpretability.
Also, there may be some test inputs that do not belong to any group, indicating that each of them
is likely to have unique testing capability. We call the space of these test inputs minority space.
To better approximate the whole set, PACE not only selects test inputs from each group accord-
ing to the group sizes to maintain the similar distribution of testing capabilities but also selects
test inputs from the minority space. More specifically, PACE borrows the idea of adaptive random
testing [22] for selection to explore the minority space with the limited number of test inputs as
sufficiently as possible.

We conducted an extensive study to evaluate the effectiveness of PACE based on 24 pairs of
DNN models under test and testing sets. In our benchmark, we considered both classification
models and regression models, high-accuracy models and low-accuracy models, Convolutional
Neural Network (CNN) models and Recurrent Neural Network (RNN) models, and different types
of test inputs (i.e., original test inputs, mutated test inputs, and automatically generated test in-
puts). Our experimental results demonstrate that PACE is able to precisely estimate the accuracy
of the whole testing set with only 1.181%∼2.302% deviations on average for all the subjects, sig-
nificantly outperforming all the three compared approaches (i.e., Simple Random Sampling (SRS),
Cross Entropy-based Sampling (CES), and Confidence-based Stratified Sampling (CSS) to be intro-
duced in Section 4.2) with the average improvements of 51.06%, 50.94%, and 70.12%, respectively.
We further investigated the contribution of each component in PACE, and the results demonstrate
that each component (including clustering, MMD-critic-based selection, and adaptive random se-
lection) indeed contributes to PACE.

To sum up, our work has the following major contributions:

• Approach. We propose the first relatively interpretable, deterministic, and efficient ap-
proach, PACE, to selecting a subset of DNN test inputs for estimating the accuracy of the
whole testing set.

• Implementation. We implement the proposed approach based on state-of-the-art frame-
works and libraries, such as Keras 2.2.4 [3] with TensorFlow 1.14.0 [6], as well as HDBSCAN,
FastICA, and MMD-critic algorithms provided by hdbscan 0.8.22 [2], sklearn [1], and the au-
thors of the MMD-critic algorithm [4], respectively.

• Study. We conduct an extensive study based on 24 pairs of DNN models under test and
testing sets, in which the diversity of both models and test inputs are considered carefully,
demonstrating the effectiveness of PACE.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:4 J. Chen et al.

• Artifact. We have released an extensive dataset for future usage and research, including
our implementation as well as experimental data.

2 BACKGROUND

2.1 DNN and DNN Testing

DNN is composed of multiple layers and each layer contains a large number of neurons [57]. The
neurons between layers are connected with links equipped with weights. The weights are acquired
based on the training process with training data. DNN maps inputs to outputs via calculation based
on these weights. Currently, DNN is mainly divided into Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN). CNN involves convolution computing and is usually used
to deal with data with grid-like topology (e.g., images) [29], while RNN uses loops to keep learned
knowledge and is often used to deal with sequential data (e.g., natural language and speech) [47].

DNN testing is one of the most widely used ways of guaranteeing the quality of DNN [60, 73].
Like traditional software systems, DNN testing also involves test inputs and test oracles. Test in-
puts in DNN testing refer to the inputs that need to be predicted by DNN. According to the specific
task of the DNN under test, the test input can be image, natural language, or speech. Test oracles
in DNN testing are based on manual labeling. That is, it is required for each test input to manually
label its ground-truth by persons. By comparing the labeled ground truth and the predicted result,
it is clear to determine whether a test input is predicted correctly by the DNN model.

2.2 Test Optimization in DNN Testing

As presented in Section 1, it is costly to label test inputs. To improve the efficiency of DNN testing,
there are two categories of methods to optimize the testing process. The first one is test input
selection. It aims to select a small set of test inputs that can precisely estimate the accuracy of
the whole testing set. Then, developers can just label the small set of test inputs instead, to save
the labeling costs. Li et al. [55] proposed the state-of-the-art approach in this category, which
selects test inputs by minimizing the cross entropy between the selected set and the whole testing
set based on the outputs of the last hidden layer of the DNN under test. The second category is
test input prioritization. It aims to rank all the test inputs based on their probabilities that can
be incorrectly predicted by the DNN under test without discarding any test input. In this way,
developers can find the test inputs revealing incorrect behaviors earlier. Shi et al. [91] proposed an
approach for test input prioritization by measuring the purity of test inputs following the idea of
Gini purity [75] based on the confidences outputted by the DNN. Zhang et al. [111] proposed to
rank test inputs by calculating their noise sensitivity. By adding the same noise to the test inputs,
the test inputs with higher noise sensitivity are more likely to fool the DNN than those with lower
noise sensitivity. Furthermore, Ma et al. [64] proposed a set of metrics based on model confidence
on specific inputs to select test inputs that are more likely to be misclassified, which has the similar
goal with test input prioritization above.

Our work belongs to the first category, i.e., test input selection, to estimate the accuracy of the
whole testing set using a small set of selected test inputs, and we discuss and compare it with the
state-of-the-art test input selection approaches [55] in Sections 4 and 5.

3 APPROACH

To improve the efficiency of DNN testing, we aim to select a subset of test inputs to represent
the whole testing set. That is, we hope to precisely estimate the accuracy of the whole set by
only labeling the small set of selected test inputs. In this way, the costs of labeling can be reduced
largely. However, how to effectively select such a small set of test inputs is challenging. Moreover,

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:5

Fig. 1. Overview of PACE.

it is required that the selection approach is interpretable, efficient, and deterministic as much as
possible, to make it applicable in practice. This is also a critical challenge to solve this problem.

In this article, we propose a novel and practical approach, called PACE (Practical ACcuracy
Estimation), to selecting such a small set of test inputs. In general, for a whole testing set, some
test inputs have similar testing capabilities (i.e., testing the similar functionalities of a DNN) while
some test inputs have different testing capabilities. Intuitively, the small set of selected test inputs
should cover various testing capabilities and maintain the original distribution of these testing
capabilities, to represent the whole set as much as possible with high interpretability. To achieve
this goal, PACE clusters all the test inputs into groups based on the identified features reflecting
their testing capabilities from them, in which different groups are more likely to have different
testing capabilities. Since the sizes of groups reflect the distribution of different testing capabilities
to some degree, PACE selects the required number of test inputs according to the proportion of
different group sizes, to maintain the similar distribution of testing capabilities.

A natural follow-up question is which test inputs should be selected from each group. Since it
is difficult to perfectly discriminate test inputs with different testing capabilities via clustering, we
should select the test inputs that best reflect the testing capability of the group to bypass the impact
of noise in each group. To further augment the interpretability of the selected test inputs, PACE
utilizes the MMD-critic algorithm [44], a state-of-the-art example-based explanation algorithm,
to select prototypes (i.e., the most representative test inputs) from each group. Furthermore, there
may be also some test inputs that do not belong to any group. That is, each of them is likely to have
unique testing capability. We call the space of these test inputs minority space. It is reasonable to
select test inputs from the minority space as well, to further approximate the whole set. To more
sufficiently explore the minority space using the required number of test inputs, PACE borrows
the idea of adaptive random testing [22] to select test inputs.

Figure 1 presents the overview of our approach PACE. In the following, we first introduce the
studied features of test inputs for clustering in Section 3.1, and then present clustering-based test-
ing capability discrimination in Section 3.2. Next, we present MMD-critic-based prototype selec-
tion in Section 3.3 and adaptive random exploration for minority space in Section 3.4. Finally, we
summarize the usage of PACE in Section 3.5.

3.1 Studied Features

We first identify features of test inputs to help discriminate their testing capabilities. Following
traditional software testing [20, 21, 110], there are two types of features that can reflect testing
capabilities to some degree, i.e., coverage features and input features. For DNN testing, the former
refers to which DNN elements are covered when executing a test input while the latter does not rely
on coverage information but relies on test-input information. In this work, we use input features to
help discriminate testing capabilities. There are three main reasons: (1) The existing work [91] has
demonstrated that, many test inputs may have very similar neuron coverage for a given DNN and

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:6 J. Chen et al.

Fig. 2. Feature extraction visualization.

thus coverage features cannot discriminate their testing capabilities well. (2) The effectiveness
of coverage features has been evaluated in the problem of selecting test inputs and the results
demonstrated that its effectiveness is worse than that of input features [55]. (3) Collecting coverage
features tend to incur extra costs.

A DNN gradually learns features from inputs to predict labels. Different layers of a DNN rep-
resent different types of input features. The layers more close to the input layer represent more
basic features while the layers more close to the output layer represent more high-order features.
That is, test-input information contains basic information, i.e., the test input itself and the ba-
sic features extracted from the test input, and high-level information, i.e., the high-order features
extracted from the test input. More high-order features can more precisely capture the relations
between inputs and labels, but they are more specific to a given DNN model and collecting them is
more costly, since it needs to run more layers of a DNN model. In contrast, more basic features are
more general and can be collected more efficiently, but they cannot reflect more complex patterns
of input features to predict labels. Our approach is not specific to certain types of input features,
and we study different types of input features in this work. More specifically, we study the fol-
lowing four types of input features (including both basic features and high-order features) as the
representatives:

• Original features (ORI): refer to the input vector of a DNN, which are the most basic
features and directly represent an input itself.

• First-layer features (FL): refer to the output of the first layer in a DNN, which are the
most close one to the input vector of a DNN.

• Last-hidden-layer features (LHL): refer to the output of the last hidden layer in a DNN,
which are the high-order features that can directly infer the prediction result for an input.

• Confidence features (CON): refer to the output of a DNN (classifier), which represent the
confidence of a prediction result and have been used by the existing work [55, 91]. We also
classify it to input features, since it does not rely on coverage information but relies on the
output derived from a test input via a DNN model.

Figure 2 illustrates where each type of features come from in DNN using one input example (i.e.,
an automobile image in CIFAR-10 used in our study to be presented in Section 4). Please note that,
the input of a DNN and the output of some layer in a DNN may be a multidimensional matrix,
and thus we reshape the matrix to a vector as a feature vector (such as ORI and FL in Figure 2). In
particular, ORI features are static features, since they do not need to run a DNN, while FL, LHL,
and CON features are all dynamic features.

3.2 Clustering-based Testing Capability Discrimination

Based on the identified features of test inputs (e.g., ORI or FL), each test input is represented
as a feature vector. PACE clusters test inputs into different groups to discriminate their testing

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:7

Fig. 3. Visualization of main stages in HDBSCAN clustering.

capabilities based on the set of feature vectors. Before clustering, we first normalize features
to adjust the values measured on different scales to a common scale. Since the features are all
numeric type, PACE adopts min-max normalization [19, 25] to adjust each value of these features
into the interval [0,1]. Suppose a whole testing set is denoted as T whose size is denoted as st ,
the set of test inputs in T is denoted as T = {t1, t2, . . . , tst } and the feature vector of ti is denoted
as Fi = { fi1, fi2, . . . , fir }, we use a variable xi j to represent the value of the jth feature for ti
before normalization and use a variable x∗i j to represent the value of the jth feature for ti after

normalization (1 ≤ i ≤ st and 1 ≤ j ≤ r). Equation (1) shows the calculation of normalization:

x∗i j =
xi j −min({xk j |1 ≤ k ≤ st })

max ({xk j |1 ≤ k ≤ st }) −min({xk j |1 ≤ k ≤ st }) . (1)

PACE then adopts the HDBSCAN (Hierarchical Density-based Spatial Clustering of Applica-
tions with Noise) algorithm [66] to cluster test inputs due to the following reasons. (1) It is scarcely
possible to know the number of types of testing capabilities in advance, and thus the clustering
algorithms that are required to pre-define the number of clusters cannot be applicable, such as
the widely used K-means algorithm [37]. HDBSCAN does not need to pre-define the number of
clusters and performs clustering based on density. (2) One of the most widely used density-based
clustering algorithms is DBSCAN [85], and HDBSCAN is its upgraded version. In particular, HDB-
SCAN can have varying density clusters while DBSCAN has to pre-define the density of clusters.
(3) HDBSCAN has been demonstrated to be very efficient [66], making our approach PACE more
practical. (4) HDBSCAN has few parameters to set and is robust to parameter selection [66], which
makes it much easier to be used in practice.

HDBSCAN is a density-based clustering algorithm that groups the data points that are closely
packed together (i.e., data points with many nearby neighbors). To more clearly illustrate the pro-
cess of HDBSCAN in PACE, we sample 100 test inputs from the testing set CIFAR-10 of the DNN
model ResNet-20 (used in our study to be presented in Section 4) to make visualization for main
stages in HDBSCAN clustering, which is shown in Figure 3. More specifically, it first constructs
a weighted graph, where data points are vertices and there is an edge between any two points
whose weight is equal to the mutual reachability distance between the two points. Equation (2)
shows the calculation of the mutual reachability distance (MRD) between points a and b based on
K nearest neighbor:

MRDk (a,b) =max {Corek (a),Corek (b),Dist (a,b)}, (2)

where Corek (a) and Corek (b) represent the distance between a/b and its kth nearest neighbor,
respectively; Dist(a, b) is the distance between a and b, measured by the widely used Euclidean

distance. Under MRD, dense points remain the same distance from each other, but sparser points
are pushed away to be at least their core distance away from any other point. Then, HDBSCAN

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:8 J. Chen et al.

builds the minimum spanning tree of the weighted graph via Prim’s algorithm [68], as shown in
Figure 3(a). Based on the minimum spanning tree, a completely connected graph is transformed
to a hierarchy of connected components by ranking the tree edges in the ascending order of the
distances and iterating via creating a new merged cluster for each edge, as shown in Figure 3(b).
Next, it condenses down the large cluster hierarchy into a smaller tree based on minimum cluster
size, which is one parameter of HDBSCAN, as shown in Figure 3(c). Finally, it extracts the sta-
ble clusters from the condensed tree by calculating the stability score of each cluster. Based on
HDBSCAN, PACE divides test inputs into different groups and different groups are more likely to
have different testing capabilities. Moreover, some test inputs are not clustered into any group and
constitute the minority space.

Please note that, when the dimension of features increases, the performance of HDBSCAN
could be largely decreased [66]. Therefore, PACE incorporates the process of dimension reduction
for high-dimensional features before clustering. More specifically, PACE uses the FastICA algo-
rithm [71] to perform dimension reduction. FastICA aims to find independent components and is
helpful to find underlying factors, by maximizing the negative entropy defined by Equation (3). In
this formula, YGauss is a Gaussian random variable with the same variance as a random variable
Y , E[.] is to calculate the mean values, and д(.) is a nonlinear function used to approximate the
differential entropy:

Nд (Y) = {E[д(Y) − E[д(YGauss)]]}2. (3)

3.3 MMD-critic-based Prototype Selection

After dividing test inputs with different testing capabilities into different groups, PACE then selects
test inputs from each group to constitute the small set of test inputs. Since it is hard to perfectly
discriminate different testing capabilities via clustering, each group could have noise, i.e., the test
inputs that should not be divided into this group. To bypass the impact of noise in each group,
it is interpretable to select the test inputs that can best represent the testing capability of the
group, which are also called prototypes. To augment the interpretability of the selected test inputs
from each group, PACE utilizes the MMD-critic algorithm [44], a state-of-the-art example-based
explanation algorithm (which is used for the interpretability of a machine learning model including
classification and clustering), to select prototypes from a group.

More specifically, it selects prototypes by calculating the difference between the prototype dis-
tribution (denoted as P) and the group distribution (denoted asG). The selected prototypes should
have the minimum difference. The MMD is a measure of the difference between P andG, given by
the supremum over a function space F of the differences between the expectations with respect
to the two distributions, which is shown in Equation (4). Besides, PACE also selects criticisms,
which are the test inputs differing the most from the prototypes in the group, based on the MMD-
critic algorithm. The criticisms together with the prototypes are able to help developers build a
better mental model to understand the group, and thus the interpretability of the selection can be
improved:

MMD(F , P ,G) = sup
f ∈F

(EX∼P [f (X)] − EY∼G [f (Y)]). (4)

In this way, PACE selects the required number of prototypes from each group to constitute the
small set, and also selects the corresponding criticisms to help understand the complex test-input
space in the group.

3.4 Adaptive Random Exploration for Minority Space

The test inputs in the minority space are also the constituent part of the whole testing set, and
thus the selected small set should also contain a part of these test inputs, to better represent the

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:9

whole testing set. However, it is challenging to select a part of these test inputs to represent the
whole minority space, since these test inputs are likely to have different testing capabilities with
each other. To explore the minority space as sufficiently as possible using the required number of
test inputs, PACE borrows the idea of adaptive random testing [22]. In this way, PACE can achieve
great diversity of testing capabilities under the required number of test inputs so that the whole
minority space can be represented by the required number of test inputs as much as possible. More
specifically, it calculates the distance between an unselected test input and each already selected
test input, and uses the minimum distance as the distance of the unselected test input with the
already selected test inputs. Then, it selects the test input that has the maximum distance with the
already selected test inputs as the next one. This adaptive-random strategy has been demonstrated
to be more effective than other adaptive-random strategies in the existing study [42]. Following
the used distance in clustering (presented in Section 3.2), PACE also uses Euclidean Distance to
calculate the distance between test inputs. Equation (5) presents the calculation at each time of
selection, whereU and S represent the set of unselected test inputs and the set of already selected
test inputs, respectively, and EucDist(,) aims to calculate the Euclidean distance between two test
inputs:

d = max
y∈U
{min

x ∈S
EucDist (x ,y)}. (5)

Traditional adaptive random testing randomly selects the first sample, but PACE selects the
first test input determinately to make it more practical and interpretable. More specifically, PACE
selects the test input that has the most unique testing capability as the first one, which has the
largest distance with all the groups. In particular, this test input is the one at the Top-1 position
by ranking the test inputs in the minority space based on their outlier_scores_ (measuring the
distance with all the groups) values provided by the HDBSCAN clustering algorithm.

3.5 Usage of PACE

In this subsection, we present the usage of PACE and Algorithm 1 shows high-level pseudo code of
PACE. The input of PACE includes a DNN under test denoted as D, a whole testing set denoted as
T whose size is denoted as st (as presented in Section 3.2), and a required number representing the
size of the small set of selected test inputs denoted as n. To construct a small set of test inputs that
can precisely estimate the accuracy of the whole set, PACE first transforms each test input into a
feature vector by extracting features (e.g., ORI or FL), shown in Lines 2–4 in Algorithm 1. Then,
PACE pre-processes the set of vectors including normalization or dimension reduction, and divides
them intom groups and the minority space by clustering (Lines 5 and 6 in Algorithm 1). Here, we
denote the size of the ith group as si and denote the size of the minority space as sm, where

∑m
i=1 si +

sm = st . The selected small set of test inputs should contain both test inputs from each group
and those from the minority space. Here, we define a threshold α to determine the proportional
distribution of them. That is, the number of selected test inputs from groups isα · n and the number
of selected test inputs from the minority space is (1 − α) · n (which is smaller than sm). Further,
PACE selects test inputs from each group according to the proportion of different group sizes to
maintain the similar distribution of testing capabilities. That is, the number of selected test inputs
from the kth group is sk∑m

i=1 si
·(α · n). After determining the number of selected test inputs from

each group or the minority space, PACE selects them based on the MMD-critic-based prototype
selection method (Lines 7–11 in Algorithm 1) or the adaptive random selection method (Lines
12–14 in Algorithm 1), and finally constructs the small set of test inputs, which is the output of
PACE (Line 15 in Algorithm 1). Developers can just label this small set of test inputs to estimate
the accuracy of the whole testing set in practice.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:10 J. Chen et al.

ALGORITHM 1: High-level pseudo code of PACE

Input: D: the DNN model under test

T: the whole testing set, whose size is st

n: the required number of selected test inputs from T

Output: X: a set of selected test inputs, whose size is n

1 X = Φ

2 foreach ti in T do

3 fi ← extractFeatures(ti , D)/* transforming a test input to a feature vector */

4 end

5 {f ′1 , f
′

2 , . . . , f
′

st }← Process(f1, f2, . . . , fst)/* pre-processing these feature vectors */

6 {д1,д2, . . . ,дm ,M}← cluster(f ′1 , f
′

2 , . . . , f
′

st)/* clustering all the feature vectors into m groups

G ← {д1, д2, . . . , дm } and the minority space M */

7 foreach дk in G do

8 selectedNumber← sk∑m
j=1 sj

·(α · n)/* determining the required number of selected test inputs from дk */

9 selectedInput← MMDselection(дk , selectedNumber)/* conducting MMD-critic-based selection from дk */

10 X.add(selectedInput)

11 end

12 selectedNumber← (1 − α) · n/* determining the required number of selected test inputs from M */

13 selectedInput← ARTselection(M, selectedNumber)/* conducting adaptive random selection from M */

14 X.add(selectedInput)

15 return X

4 EVALUATION DESIGN

In this study, we aim to address the following five research questions:

• RQ1: How does PACE perform in terms of effectiveness and efficiency?
• RQ2: What is the impact of different features on PACE?
• RQ3: What is the impact of the threshold α on PACE?
• RQ4: What is the impact of dimension reduction (including different dimension numbers

and different dimension reduction algorithms) on PACE?
• RQ5: Does each component contribute to PACE?

4.1 DNN Models and Datasets

In our study, we used 24 pairs of DNN models under test and testing sets as subjects in total.
The used DNN models are trained based on eight popular datasets (i.e., MNIST, CIFAR-10,
CIFAR-100, SVHN, Driving, Fashion-MNIST, ImageNet, and Speech-Commands), respectively,
which have been widely used in the existing studies [55, 91, 99]. More specifically, MNIST is
a handwritten digit dataset,3 CIFAR-10 is a 10-class ubiquitous object dataset,4 CIFAR-100 is
a 100-class ubiquitous object dataset,5 SVHN is a street view house number dataset collected
from real-world scenes,6 Driving is an autonompus driving dataset provided by Udacity,7

Fashion-MNIST is a 10-class product dataset provided by the research department of Zalando, a
German fashion technology company,8 ImageNet is an image dataset organized according to the

3http://yann.lecun.com/exdb/mnist/.
4http://www.cs.toronto.edu/∼kriz/cifar.html.
5http://www.cs.toronto.edu/∼kriz/cifar.html.
6http://ufldl.stanford.edu/housenumbers/.
7https://udacity.com/self-driving-car.
8https://github.com/zalandoresearch/fashion-mnist.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/
https://udacity.com/self-driving-car
https://github.com/zalandoresearch/fashion-mnist

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:11

Table 1. DNN Models and Testing Sets

ID Testing set Model Size(KB) #Tests Accuracy(%) Task Test Type

1

MNIST

LeNet-1 113 10,000 94.86 classification

original

2 LeNet-4 947 10,000 96.79 classification

3 LeNet-5 1,093 10,000 98.68 classification

4 LeNet-5-M1 1,093 10,000 79.53 classification

5 LeNet-5-M2 1,093 10,000 77.27 classification

6 LeNet-5-M3 1,093 10,000 79.14 classification

7
CIFAR-10

VGG-16 21,814 10,000 96.07 classification
original

8 ResNet-20 3,507 10,000 91.45 classification

9 CIFAR-100 ResNet-20 10,615 10,000 71.42 classification original

10 SVHN LeNet-5 522 26,032 87.90 classification original

11
Driving

Dave-orig 8,306 5,614 90.34 regression
original

12 Dave-drop 12,832 5,614 91.82 regression

13
Driving-patch

Dave-orig 8,306 5,614 74.18 regression
mutated

14 Dave-drop 12,832 5,614 71.88 regression

15
Driving-light

Dave-orig 8,306 5,614 84.98 regression
mutated

16 Dave-drop 12,832 5,614 71.17 regression

17 Fashion-MNIST LeNet-5 385 10,000 89.88 classification original

18 Autogen-MNIST LeNet-5 1,093 10,000 49.35 classification generated

19 Autogen-CIFAR-10 ResNet-20 3,507 10,000 42.92 classification generated

20 Autogen-SVHN LeNet-5 522 10,000 43.69 classification generated

21 Autogen-Fashion LeNet-5 385 10,000 45.31 classification generated

22 ImageNet VGG-19 562,176 50,000 64.73 classification original

23 ImageNet ResNet-50 100,352 50,000 68.27 classification original

24 Speech-Commands DeepSpeech 6,734 6,417 94.53 classification original

∗The accuracy of ImageNet models in our study is slightly smaller than that in Reference [92], since the pre-processing

methods used in our study and that paper are slightly different. More specifically, to obtain the fixed-size 224×224 input

images from ImageNet, that paper randomly crops images from rescaled images, while we resize images without cropping

following the method provided by official Keras examples.

WordNet hierarchy, which is more realistic and complex,9 and Speech-Commands is a sequential
dataset, which contains a set of one-second .wav audio files collected using crowdsourcing, each
containing a single spoken English word.10 Table 1 presents the detailed information of the used
models and their testing sets. In this table, the last five columns represent the size of the model,
the size of the whole testing set for the model, the accuracy achieved by the whole testing set for
the model, the task of the model (classification or regression), and the type of test inputs (original,
mutated, or automatically generated test inputs), respectively. Since the practical scenario is very
complex, we tried to construct a comprehensive benchmark in our study.

First, we considered different types of test inputs: the original test inputs, the mutated test inputs
(i.e., Driving-patch and Driving-light), and the automatically generated test inputs (i.e., Autogen-
MNIST, Autogen-CIFAR-10, Autogen-SVHN, and Autogen-Fashion). The mutated test inputs aim
to simulate the different physical environments when a model is applied in practice. Following the
existing work [55], for the models Dave-orig and Dave-drop trained based on Driving, we pro-
duced Driving-patch by randomly blocking some parts of each test input in Driving to simulate

9http://www.image-net.org.
10https://github.com/bjtommychen/Keras_DeepSpeech2_SpeechRecognition.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

http://www.image-net.org
https://github.com/bjtommychen/Keras_DeepSpeech2_SpeechRecognition

30:12 J. Chen et al.

block some parts of a camera, and produced Driving-light by randomly changing the intensities
of lights for each test input in Driving. Currently, automatically generating testing inputs (also
called adversarial examples) is also a popular method to test a DNN model. Therefore, we also used
the automatically generated test inputs in our study. Following the existing work [91], we used
the Basic Iterative Method [46] to automatically generate test inputs. More specifically, based on
MNIST, CIFAR-10, SVHN, and Fashion-MNIST, we constructed Autogen-MNIST, Autogen-CIFAR-
10, Autogen-SVHN, and Autogen-Fashion, respectively, each of which contains 5,000 test inputs
generated automatically and 5,000 test inputs selected randomly from the original testing set, fol-
lowing the practice of the existing work [91].

Second, we considered the DNN models with different accuracy, i.e., high-accuracy models and
low-accuracy models. Here, we define the model whose accuracy is smaller than 80% as a low-
accuracy model; otherwise, the model is a high-accuracy model. The existing work [55] produced
mutated models to simulate low-accuracy models. Following this existing work, we also adopted
their mutated models (i.e., LeNet-5-M1, LeNet-5-M2, and LeNet-5-M3) in our study. More specifi-
cally, the three mutated models were produced based on three mutation strategies. The first muta-
tion strategy is to exchange the labels “8” and “0” in the training data, and then build the mutated
model LeNet-5-M1. The second one is to exchange the labels “7” and “1” in the training data, and
then build the mutated model LeNet-5-M2. The third one is to exchange the labels “9” and “3”
in the training data, and then build the mutated model LeNet-5-M3. Besides, we used three real-
world low-accuracy models, i.e., ResNet-20 based on CIFAR-100, VGG-19 based on ImageNet, and
ResNet-50 based on ImageNet, as models under test in our study. Also, the mutated test inputs and
the automatically generated test inputs provided some low-accuracy models, including Dave-orig
with Driving-patch, Dave-drop with Driving-patch, Dave-drop with Driving-light, ResNet-20 with
Autogen-CIFAR-10, LeNet-5 with Autogen-SVHN, and LeNet-5 with Autogen-Fashion.

Third, we considered the DNN models with different tasks, i.e., classification models and regres-
sion models, in our study, where we adopts the regression models used in the existing work [55],
i.e., Dave-orig and Dave-drop (ID: 11-16), and the other models used in our study are classification
models. In particular, DeepSpeech is a multi-label classification model while the other classifica-
tion models are single-label classification models. Moreover, we also considered both CNN and
RNN models, where DeepSpeech is a RNN model while the other models are CNN models.

4.2 Independent Variables

In the study, we considered the following seven independent variables:

• Compared Approaches. In our study, we considered three compared approaches in total, in-
cluding one baseline (i.e., SRS) and two state-of-the-art approaches (i.e., CES and CSS).

SRS (Simple Random Sampling) randomly selects a required number of test inputs from the
whole testing set, where each test input has the same probability to be selected. SRS is regarded
as the baseline in our study.

CES (Cross Entropy-based Sampling) [55] selects a required number of test inputs by minimizing
the cross entropy between the selected set and the whole testing set to guarantee the distribution
similarity. In particular, CES transforms each test input into a feature vector by extracting its last-
hidden-layer features. CES is the state-of-the-art approach to selecting a small set of test inputs to
estimate the accuracy of the whole testing set.

CSS (Confidence-based Stratified Sampling) [55] is based on the confidence features of test in-
puts. CSS first divides the confidence values into different intervals, and then selects test inputs
based on their confidence values in different intervals, to guarantee the distribution similarity be-
tween the selected set and the whole testing set. CSS is also regarded as a state-of-the-art approach.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:13

The existing work [55] has compared the three approaches, and the experimental results demon-
strated that in general CES is the most effective approach among them. However, CSS performs
better than CES for high-accuracy models, while the former performs worse than the latter, even
worse than SRS for low-accuracy models, since the confidence is not reliable for low-accuracy
models. Also, CSS cannot be applied to regression models and multi-label classification models,
while CES and SRS can be applied to regression models, single-label classification models, and
multi-label classification models. That is, in our study CSS cannot be applied to Dave-orig, Dave-
drop, and DeepSpeech. In particular, all the three compared approaches involve randomness, and
thus we repeated them 50 times following the existing work [55].

• Variants of PACE. To investigate the contribution of each component in PACE, we proposed
four variants of PACE as follows.

PACE
д

r and
replaces the MMD-critic-based selection from the groups with random selection

in PACE. That is, PACE
д

r and
randomly selects test inputs from each group after clustering. This

variant aims to investigate the contribution of the MMD-critic-based selection in PACE.
PACEm

r and
replaces the adaptive random selection from the minority space with random selec-

tion in PACE. That is, PACEm
r and

randomly selects test inputs from the minority space. This variant
aims to investigate the contribution of the adaptive random selection in PACE.

To investigate the contribution of clustering in PACE, we proposed PACEmmd and PACEar t .

The former directly selects test inputs based on the MMD-critic algorithm from the whole testing
set without clustering, while the latter directly selects test inputs based on the adaptive random
method from the whole testing set without clustering.

PACE
д

r and
, PACEm

r and
, and PACEar t involve randomness, and thus they were repeated 50 times.

Here, PACEar t randomly selects the first test input.

• Number of Selected Test Inputs. Similar to the existing work [55], we set different sizes of
the selected testing set, i.e., ranging from 50 to 180 with the interval of 10, to investigate the
effectiveness of PACE more sufficiently.

• Features. We studied four types of features in our study, including ORI, FL, LHL, and CON
(presented in Section 3.1). Here, we used LHL as the default feature in PACE.

• Threshold α Values. We investigated the impact of the threshold α in our study. Intuitively,
the number of selected test inputs from the minority space should be smaller than that from the
clustered groups, and thus we considered the α value to be 0.5, 0.6, 0.7, 0.8, and 0.9, respectively.
Here, we used 0.8 as the default setting in PACE.

• Dimension Numbers. We investigated the impact of different dimension numbers of the Fas-
tICA algorithm on PACE. Here, we studied four different dimension numbers, i.e., 2, 4, 8, and 16,
and our result recommends 2 as the default number of the FastICA algorithm in PACE.

• Dimension Reduction Algorithms. We investigated the impact of different dimension
reduction algorithms on PACE. Here, we studied four popular dimension reduction algorithms,
including the PCA algorithm, the NMF algorithm, the FA algorithm, and our currently used Fas-
tICA algorithm. More specifically, the PCA (Principal Component Analysis) algorithm projects the
data to a lower dimensional space by keeping only the most significant singular vectors [101]. The
NMF (Non-Negative Matrix Factorization) algorithm conducts dimension reduction by finding two
non-negative matrices whose product approximates a non-negative matrix via factorization [48].
The FA (Factor Analysis) algorithm [83] aims to identify certain unobservable factors from the
observed variables to conduct dimension reduction. In our study, we set the dimension number

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:14 J. Chen et al.

of all these algorithms to be 2 and used the default settings of the other parameters provided by
sklearn [5].

4.3 Measurements

The goal of PACE is to estimate the accuracy of the whole testing set using a small set of test
inputs, and thus following the existing work [55], we used Mean-squared Errors (MSE) to measure
the effectiveness of PACE, the compared approaches, and the variants of PACE. Although the goal
of DNN testing also contains “revealing potential errors” and “covering the corner cases,” these
actually are the target of test input prioritization as presented in Section 2.2 rather than test input
selection that our work focuses on. Therefore, we did not use these measurements to evaluate the
effectiveness of these test input selection approaches in the study. Since some approaches were
repeated 50 times due to randomness, the calculation of the MSE for them is shown in Equation (6).
In this equation, ˆacci and acc refer to the estimated and actual accuracy, respectively. PACE and
PACEmmd are also calculated based on Equation (6), but they evaluate to | ˆacc − acc |, since they are
deterministic and we ran them only once. The smaller the MSE value is, the better the effectiveness
of a selection approach is:

MSE =

√√
1

50

50∑
i=1

| ˆacci − acc |2. (6)

Besides, we also measured the efficiency of each selection approach by recording the time cost
spent on selection.

4.4 Implementations

We implemented PACE using Python and extracted features based on Keras 2.2.4 [3] with Tensor-
Flow 1.14.0 [6]. We adopted the implementations of the HDBSCAN algorithm, various dimension
reduction algorithms, and the MMD-critic algorithm provided by hdbscan 0.8.22 [2], sklearn [1],
and the authors of the MMD-critic algorithm [4], respectively. For the parameters in HDBSCAN,
we set min_cluster_size to be 80 and min_samples to be 4 for all the subjects in our study, based
on a small dataset. As demonstrated by the existing work [66], HDBSCAN is robust to parameter
selection. The performance of HDBSCAN could be largely decreased when the dimension of fea-
tures is high, and thus PACE performs dimension reduction before clustering in this case based
on FastICA. More specifically, when the number of produced groups by HDBSCAN is very small
(i.e., no more than 3) or a large portion of test inputs (i.e., more than 80% test inputs) are divided
into the same group, indicating the poor performance of clustering, PACE conducts dimension
reduction for them. Here, we also implemented a tool to automatically determine the application
of dimension reduction. For the compared approach SRS, CES, and CSS, we adopted the existing
implementations released by the existing work [55].

Our experiments are conducted on the Intel Xeon E5-2640 machine with 128GB RAM, CentOS
7.6. All the code and data in our work are available at the project homepage: https://github.com/
pace2019/pace.

4.5 Process

We present the process of our study for each model under test and its whole testing set as follows.
First, we ran each selection approach (including PACE, three compared approaches, and four

variants of PACE) to produce a set of selected test inputs, under the size ranging from 50 to 180
with the interval of 10. The small set of selected test inputs are used to estimate the accuracy of
the whole testing set. For the approaches involving randomness, we ran them 50 times. We then
calculated the MSE value and the time cost spent on selection for each approach. Based on these

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

https://github.com/pace2019/pace
https://github.com/pace2019/pace

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:15

results, we can answer RQ1 (comparing PACE with SRS, CES, and CSS) and RQ5 (comparing PACE
with its four variants).

To investigate the effectiveness of different features in RQ2, we ran PACE by using ORI, FL, and
CON to select test inputs under different sizes, respectively. We then calculated the MSE value for
PACE with each type of feature.

To investigate the impact of the threshold α on PACE in RQ3, we ran PACE with different α
values, ranging from 0.5 to 0.9 with the interval of 0.1, to select test inputs under different sizes,
respectively. We then calculated the MSE value for PACE with each α value.

To investigate the impact of dimension reduction on PACE in RQ4, we ran PACE with different
dimension numbers (i.e., 2, 4, 8, and 16) of the FastICA algorithm and ran PACE with different di-
mension reduction algorithms (i.e., the PCA algorithm, the NMF algorithm, and the FA algorithm)
to select test inputs under different sizes, respectively. We then calculated the MSE value for PACE
with different dimension numbers and different dimension reduction algorithms.

5 RESULTS AND ANALYSIS

5.1 Overall Effectiveness

Tables 2 and 3 present the comparison results among PACE, SRS, CES, and CSS in terms of effec-
tiveness (i.e., the MSE values). Due to the space limit, we separated the comparison results into two
tables. In the two tables, we highlighted the best effectiveness among all the compared approaches
for each number of selected test inputs using and calculated the average improvement of PACE
at all the studied numbers of selected test inputs over each compared approach shown in Column
“⇑Im .” From the two tables, for all the 336 cases (24 subjects × 14 settings for the number of se-
lected test inputs), PACE performs the best in 87.80% (295 out of 336) cases, while SRS performs
the best in 2.08% (7 out of 336) cases, CES performs the best in 6.55% (22 out of 336) cases, and
CSS performs the best in 3.57% (12 out of 336) cases, demonstrating the dominant superiority of
PACE. We also calculated the average results on all the subjects and found that PACE outperforms
all the three compared approaches on average at each studied number of selected test inputs. In
particular, the average MSE values of PACE only range from 1.181% to 2.302%, demonstrating that
PACE indeed is able to estimate the accuracy of the whole testing set very precisely using a small
number of selected test inputs. Moreover, PACE improves the effectiveness by 51.06%, 50.94%, and
70.12% compared with SRS, CES, and CSS on average, respectively. In practice, the accuracy of a
DNN model is very important, especially in safety-critical domains. Therefore, the achieved im-
provements by PACE are indeed important and valuable.

Furthermore, we found that the performance of PACE has fluctuations to some extent on differ-
ent numbers of selected test inputs. We analyzed the possible reasons for the fluctuations in PACE,
which are twofold. First, during the clustering process, it is challenging for PACE to divide all test
inputs with different testing capabilities into different groups. That is, there may be noise dur-
ing the clustering process in PACE. Second, PACE determines the number of test inputs selected
from each group according to the proportion of group sizes. However, for the studied numbers of
selected test inputs in this work (which is similar to the existing work [55]), it may not always ex-
actly divide each studied number into these groups. That is, there may exist the cases of rounding,
which could lead to performance fluctuations especially when the number of selected test inputs
is small. Please note that despite such fluctuations in PACE, PACE still outperforms all the com-
pared approaches in most cases (i.e., 87.80% cases). Therefore, PACE is a more reliable choice for
DNN test input selection among all these existing approaches. Besides, during the practical usage,
when users select the number (that can be exactly divided into each group without rounding) of
test inputs, the performance of PACE could become more stable.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:16 J. Chen et al.

Table 2. Effectiveness Comparison Among PACE, SRS, CES, and CSS in Terms of MSE (%) (ID: 1∼12)

ID App. Number of selected test inputs ⇑I m (%)

50 60 70 80 90 100 110 120 130 140 150 160 170 180

1

SRS 2.423 2.040 1.679 1.741 1.827 1.699 1.739 1.672 1.595 1.492 1.509 1.465 1.440 1.333 76.94
CES 2.540 2.160 1.913 1.837 1.880 1.816 1.742 1.613 1.529 1.445 1.326 1.334 1.289 1.262 76.94
CSS 2.409 2.308 1.925 1.916 1.747 2.222 2.004 1.847 1.694 1.579 1.730 1.652 1.572 1.502 78.89
PACE 0.742 0.222 0.494 1.110 0.295 0.190 0.315 0.181 0.163 0.574 0.158 0.202 0.434 0.385 —

2

SRS 3.010 2.576 2.438 2.434 2.147 1.978 1.852 1.770 1.680 1.567 1.520 1.591 1.419 1.368 57.30
CES 2.447 2.027 1.975 1.813 1.757 1.681 1.483 1.446 1.416 1.408 1.330 1.217 1.217 1.216 48.68
CSS 1.485 1.260 1.145 1.073 1.015 0.944 0.848 0.800 0.717 0.739 0.677 0.631 0.642 0.658 6.84
PACE 1.249 1.790 1.076 0.494 0.087 0.240 0.483 0.731 0.920 1.082 0.561 0.710 0.871 0.988 —

3

SRS 1.418 1.310 1.258 1.154 1.047 1.043 1.107 1.034 0.954 0.919 0.957 0.896 0.838 0.821 52.13
CES 1.227 1.120 1.063 0.985 0.911 0.934 0.903 0.902 0.886 0.825 0.839 0.755 0.703 0.709 44.73
CSS 0.764 0.736 0.627 0.599 0.549 0.548 0.542 0.524 0.526 0.502 0.475 0.447 0.449 0.443 8.74
PACE 0.603 0.319 0.088 0.070 0.245 0.320 0.419 0.487 0.551 0.611 0.653 0.703 0.732 0.764 —

4

SRS 4.514 4.805 4.491 4.170 3.494 3.157 3.312 3.297 3.219 3.089 2.941 2.987 2.795 2.751 34.94
CES 3.784 3.821 3.612 3.640 3.496 3.597 3.444 3.426 3.282 3.380 3.433 3.541 3.586 3.535 33.25
CSS 8.795 8.173 8.202 7.778 7.390 7.128 6.595 6.009 5.688 5.750 5.402 5.168 5.166 4.590 65.64
PACE 4.470 3.803 3.569 2.748 3.616 2.470 2.288 2.823 1.720 1.899 1.803 1.095 0.470 0.580 —

5

SRS 5.435 4.757 4.425 4.176 3.988 3.983 4.250 3.960 3.603 3.454 3.649 3.610 3.358 3.210 36.72
CES 5.199 4.702 4.436 4.259 4.576 4.486 4.544 4.580 4.255 4.272 4.353 4.297 4.253 4.397 44.37
CSS 9.872 9.857 9.074 7.943 7.148 6.644 6.368 6.228 5.917 5.676 5.249 5.102 5.008 4.756 61.42
PACE 1.161 2.730 2.440 2.730 2.730 3.730 2.730 2.730 2.730 2.016 2.200 2.360 2.262 2.060 —

6

SRS 5.520 5.333 4.674 4.084 3.606 3.578 3.456 3.119 2.965 2.914 2.981 3.097 3.307 3.373 78.67
CES 4.211 4.230 4.121 3.755 3.633 3.583 3.476 3.274 3.004 3.038 3.111 2.969 3.036 3.067 76.90
CSS 7.991 7.083 7.307 7.290 6.767 6.683 5.974 5.809 5.422 4.935 4.767 4.658 4.746 4.609 86.95
PACE 3.140 0.807 0.569 0.390 1.080 1.860 1.217 0.027 0.705 0.293 0.330 0.879 0.316 0.134 —

7

SRS 1.681 1.551 1.456 1.391 1.324 1.187 1.086 1.019 0.994 0.901 0.812 0.762 0.690 0.690 83.71
CES 1.120 1.019 0.977 0.968 0.973 0.895 0.827 0.836 0.760 0.698 0.708 0.681 0.650 0.636 79.60
CSS 0.795 0.731 0.666 0.596 0.537 0.552 0.574 0.496 0.484 0.500 0.459 0.408 0.382 0.377 67.61
PACE 0.080 0.008 0.123 0.051 0.259 0.026 0.232 0.483 0.262 0.309 0.085 0.137 0.044 0.169 —

8

SRS 4.175 3.372 3.098 2.879 2.636 2.337 2.311 2.181 2.168 2.159 2.202 2.093 2.123 2.136 46.02
CES 4.277 3.779 3.492 2.942 2.894 2.663 2.555 2.510 2.296 2.272 2.274 2.095 2.108 1.968 48.14
CSS 3.506 3.719 3.229 2.850 2.683 2.471 2.317 2.323 2.203 2.128 2.226 2.215 2.118 2.026 45.56
PACE 2.668 0.353 0.099 1.143 0.241 1.351 2.261 1.367 1.374 1.379 1.384 0.767 1.976 1.947 —

9

SRS 6.189 5.963 5.672 5.276 4.796 4.560 4.214 3.829 3.794 3.641 3.684 3.399 3.092 3.017 40.37
CES 6.177 6.053 5.595 5.054 5.063 4.784 4.522 4.244 4.065 3.600 3.358 3.224 3.228 3.118 41.24
CSS 9.345 8.407 8.075 8.536 8.631 8.601 8.237 7.866 7.301 6.799 6.556 6.418 6.258 6.529 66.55
PACE 5.051 3.990 3.228 1.050 1.420 2.420 2.051 3.387 1.954 1.916 3.208 1.855 2.596 1.807 —

10

SRS 4.598 4.297 3.344 3.295 3.253 3.019 2.590 2.389 2.406 2.423 2.408 2.402 2.152 2.049 74.47
CES 5.846 5.858 5.577 5.295 5.159 4.915 5.011 4.783 4.578 4.604 4.643 4.636 4.786 4.726 85.54
CSS 4.170 3.903 3.767 3.876 3.949 3.677 3.376 3.248 3.126 2.902 2.964 2.895 2.782 2.662 78.26
PACE 1.578 0.164 1.578 1.639 0.646 0.676 0.070 0.008 0.164 0.396 0.968 0.779 0.612 1.082 —

11

SRS 1.813 1.505 1.411 1.288 1.363 1.267 1.176 1.199 1.152 1.077 1.081 1.026 1.008 0.939 27.79
CES 1.599 1.344 1.220 1.195 1.101 1.013 1.066 1.082 1.022 0.975 1.011 1.022 0.949 0.879 18.86
CSS — — — — — — — — — — — — — — —
PACE 1.415 1.389 1.455 1.255 1.382 1.126 1.049 0.717 0.244 0.093 0.400 0.649 0.696 0.954 —

12

SRS 1.647 1.469 1.398 1.293 1.143 1.083 1.012 1.027 0.991 0.999 0.991 0.941 0.831 0.799 50.06
CES 1.572 1.511 1.311 1.181 1.077 1.037 1.011 0.973 0.869 0.852 0.795 0.747 0.729 0.702 45.50
CSS — — — — — — — — — — — — — — —
PACE 1.770 1.286 0.521 1.581 0.889 0.350 0.106 0.069 0.123 0.290 0.474 0.333 0.364 0.391

∗Columns 3–16 present the MSE values (%) for different numbers of selected test inputs. The cell marked with the

shading represents the best effectiveness among all the compared approaches in the case. “—” represents the approach

cannot be applied in the case. Column “⇑Im ” represents the average improved rate of the MSE value of PACE at all the

studied numbers of selected test inputs over each of the three compared approaches.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:17

Table 3. Effectiveness Comparison Among PACE, SRS, CES, and CSS in Terms of MSE (%) (ID: 13∼24)

ID App. Number of selected test inputs ⇑I m (%)

50 60 70 80 90 100 110 120 130 140 150 160 170 180

13

SRS 5.007 4.448 4.099 3.557 3.294 3.115 3.071 2.885 2.949 2.741 2.811 2.701 2.479 2.418 52.04

CES 4.607 4.321 3.905 3.302 2.845 2.755 2.695 2.470 2.333 2.207 2.309 2.334 2.199 2.200 45.11

CSS — — — — — — — — — — — — — — —

PACE 6.034 3.015 0.897 2.672 0.663 0.563 0.844 0.277 2.796 2.280 0.943 1.796 0.536 0.269 —

14

SRS 6.587 5.572 4.895 5.400 5.130 4.996 4.882 4.885 4.573 4.238 4.087 3.750 3.560 3.358 80.38

CES 5.516 5.108 4.912 4.549 4.325 3.960 3.897 3.512 3.392 3.309 3.344 3.205 3.113 3.062 76.92

CSS — — — — — — — — — — — — — — —

PACE 3.798 0.830 1.970 0.459 1.740 1.578 0.246 0.444 0.153 0.716 0.610 0.492 0.883 0.021 —

15

SRS 3.057 2.799 2.606 2.467 2.330 2.149 2.165 1.975 1.824 1.732 1.740 1.716 1.597 1.518 55.91

CES 2.580 2.316 2.079 1.917 1.738 1.699 1.616 1.564 1.481 1.404 1.438 1.459 1.407 1.364 44.47

CSS — — — — — — — — — — — — — — —

PACE 2.479 2.438 1.138 1.695 1.483 1.342 1.611 0.992 0.824 0.496 0.175 0.020 0.010 0.005 —

16

SRS 7.360 7.536 7.023 6.447 5.859 5.733 5.335 5.108 4.743 4.722 4.425 4.280 4.068 3.944 40.47

CES 5.746 5.238 5.030 4.930 4.940 4.653 4.489 4.335 4.003 3.988 3.852 3.676 3.589 3.300 25.98

CSS — — — — — — — — — — — — — — —

PACE 6.131 5.832 3.957 5.318 3.996 3.708 2.667 3.177 3.235 2.298 1.000 0.796 2.573 2.665 —

17

SRS 4.438 4.205 3.617 3.451 3.433 2.911 2.578 2.396 2.148 2.176 2.254 2.294 2.165 2.160 61.47

CES 4.976 4.432 3.993 3.863 3.969 3.593 3.403 3.174 3.203 2.974 2.901 2.854 2.838 2.855 69.08

CSS 5.450 4.673 4.258 3.821 3.829 3.528 3.246 3.308 3.093 3.088 3.107 3.008 2.893 2.745 69.34

PACE 0.316 0.284 1.669 1.478 2.428 2.199 1.111 0.203 1.330 0.518 1.801 1.060 0.406 0.175 —

18

SRS 8.067 7.652 6.993 6.876 6.244 5.700 5.179 4.810 4.801 4.423 4.112 4.074 3.832 3.589 45.88

CES 7.426 6.008 5.914 5.099 4.579 4.727 4.467 4.197 3.961 3.665 3.566 3.402 3.280 3.232 36.09

CSS 13.815 12.785 11.538 10.262 9.640 8.657 8.055 7.325 7.015 6.567 6.720 6.380 6.177 6.089 65.59

PACE 1.979 3.079 2.594 1.728 0.115 1.148 3.380 3.545 4.141 3.171 3.033 2.882 3.629 2.608 —

19

SRS 6.452 5.998 6.039 5.549 4.911 4.331 4.229 3.985 3.767 3.886 3.676 3.643 3.387 3.190 23.55

CES 7.256 6.734 6.345 6.231 6.210 6.008 5.469 5.146 5.073 4.817 4.423 4.198 4.040 3.941 38.55

CSS 12.653 12.011 11.722 10.714 9.812 8.658 8.540 7.798 7.875 7.418 7.017 6.877 6.409 6.268 61.26

PACE 0.920 2.080 4.223 3.330 3.147 4.605 7.080 6.247 4.772 2.794 2.413 1.734 2.109 0.726 —

20

SRS 7.279 5.974 5.280 5.393 5.051 4.561 4.374 4.142 3.973 3.628 3.549 3.503 3.508 3.304 57.35

CES 6.443 5.963 5.668 5.625 5.131 5.212 4.802 4.452 4.686 4.694 4.719 4.591 4.363 4.421 65.07

CSS 12.256 12.070 11.720 10.181 9.179 7.510 7.347 7.252 7.238 6.568 6.377 5.962 6.080 6.281 76.06

PACE 2.310 0.357 0.596 1.190 0.357 0.690 0.855 0.477 2.464 3.453 4.310 3.810 1.604 1.310 —

21

SRS 7.919 7.478 6.621 6.417 5.646 5.466 4.890 4.331 4.028 4.198 4.038 4.161 4.086 3.929 36.23

CES 6.258 5.993 5.327 5.332 5.164 5.120 5.284 5.115 4.985 4.802 4.796 4.819 4.648 4.586 37.67

CSS 14.096 12.718 11.967 11.351 10.762 9.782 9.638 9.234 8.501 7.995 8.301 8.111 7.742 7.741 66.73

PACE 1.310 3.870 3.986 4.057 3.005 5.185 4.240 3.429 3.527 2.917 2.341 1.274 2.619 3.042 —

22

SRS 6.262 5.324 5.376 4.792 4.179 4.315 4.526 4.396 4.114 3.794 3.556 3.408 3.300 3.057 62.95

CES 5.348 5.101 4.520 4.219 4.030 3.870 3.523 3.209 2.976 2.805 2.656 2.599 2.522 2.539 53.27

CSS 11.089 10.264 9.075 9.012 8.730 8.548 7.897 8.092 7.604 7.004 6.476 6.421 6.717 6.355 80.39

PACE 0.667 1.716 1.315 2.093 1.364 0.185 0.816 1.161 1.937 2.838 2.786 0.933 1.747 1.399 —

23

SRS 7.231 6.515 6.084 5.568 5.835 5.538 5.176 5.070 4.627 4.430 4.216 4.023 3.855 3.858 43.28

CES 6.581 5.555 4.999 4.949 4.867 4.629 4.475 4.111 3.848 3.666 3.524 3.340 3.241 3.021 32.08

CSS 9.709 9.646 9.300 9.108 8.788 7.959 7.247 6.865 6.311 6.126 5.980 6.325 6.053 5.735 61.37

PACE 3.980 1.599 3.792 4.737 3.003 0.647 0.430 3.750 2.594 2.988 2.682 2.412 2.948 3.785 —

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:18 J. Chen et al.

Table 3. Continued

ID App. Number of selected test inputs ⇑I m (%)

50 60 70 80 90 100 110 120 130 140 150 160 170 180

24

SRS 3.043 2.584 2.806 2.837 2.680 2.473 2.504 2.244 2.122 1.892 1.729 1.674 1.686 1.642 43.07

CES 3.068 3.102 3.016 2.893 2.693 2.686 2.690 2.679 2.620 2.574 2.452 2.483 2.512 2.453 52.49

CSS — — — — — — — — — — — — — — —

PACE 1.389 2.192 2.613 1.812 0.976 1.587 1.801 0.298 0.890 0.506 0.865 1.040 1.304 1.075 —

Avg

SRS 4.797 4.377 4.033 3.831 3.551 3.341 3.209 3.030 2.883 2.771 2.705 2.646 2.524 2.435 51.06

CES 4.408 4.062 3.792 3.576 3.459 3.347 3.225 3.068 2.939 2.845 2.798 2.728 2.679 2.633 50.94

CSS 7.541 7.079 6.682 6.289 5.950 5.536 5.224 5.001 4.748 4.487 4.381 4.275 4.188 4.080 70.12

PACE 2.302 1.840 1.833 1.868 1.465 1.591 1.596 1.542 1.649 1.493 1.466 1.197 1.323 1.181 —

∗Row “Avg” represents the average results on all the subjects. Please note that CSS cannot be applied to regression

models and multi-label classification models, and thus the average results for CSS are based on all the classification

models except DeepSpeech and the average improvement of PACE over CSS is also based on all the classification

models except DeepSpeech.

Table 4. Statistical Analysis of the Effectiveness of PACE Compared with SRS, CES, and CSS

PACE v.s. 50 60 70 80 90 100 110 120 130 140 150 160 170 180

SRS 0.828 0.835 0.826 0.814 0.839 0.800 0.806 0.788 0.752 0.774 0.776 0.828 0.786 0.806

CES 0.788 0.821 0.813 0.783 0.835 0.799 0.804 0.786 0.752 0.792 0.786 0.819 0.795 0.807

CSS 0.855 0.869 0.841 0.824 0.862 0.837 0.820 0.806 0.789 0.792 0.785 0.803 0.803 0.817

∗Each cell represents the Â12 value and the bold value indicates that PACE indeed significantly outperforms the compared

approach. The statistical analysis for PACE v.s. SRS and PACE vs. CES is conducted on all the subjects while the statistical

analysis for PACE vs. CSS is conducted on all the classification models except DeepSpeech, since CSS cannot be applied

to regression models and multi-label classification models.

Please note that, as presented in Section 3.1, PACE does not rely on the classes, but instead relies
on the input features of test inputs, and thus the performance of PACE is not affected by the number
of classes. Moreover, same as the existing work [55], PACE aims to estimate the accuracy of the
whole testing set rather than the accuracy for each class. Therefore, PACE is able to perform well
regardless of the number of classes (e.g., 10 classes for CIFAR-10 or 1,000 classes for ImageNet).

Statistical analysis. To further confirm our observations, we performed a paired sample Wilcoxon

signed-rank test [100] at the significance level of 0.05 to investigate whether PACE can signifi-
cantly outperform each compared approach across all the subjects, and then performed the Vargha-

Delaney effect size measure [96] to investigate the difference degree between PACE and each com-
pared approach. Following the existing work [65], the difference degree is characterized as small,

medium, and large when the effect size Â12 is larger than 0.56, 0.64, and 0.71, respectively. Table 4
shows the results of statistical analysis. From this table, we found that all the values are bold, indi-
cating that PACE is able to significantly outperform all the compared approaches at each studied
number of selected test inputs. Moreover, all the effect size values are larger than 0.71, demonstrat-
ing that the differences between PACE and all the compared approaches are large at each studied
number of selected test inputs.

Effectiveness on classification models and regression models. We considered the models
conducting different tasks, including regression (ID: 11∼16) and classification, to evaluate the ef-
fectiveness of PACE in our study. Table 5 shows the average results of PACE on classification
models and regression models, respectively. From this table, we find that on average, PACE out-
performs all the three compared approaches for classification models at each studied number of

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:19

Table 5. Effectiveness Comparison Among PACE, SRS, CES, and CSS in Terms of the Average

MSE Values (%) for Classification Models and Regression Models

Task App. Number of selected test inputs ⇑I m (%)

50 60 70 80 90 100 110 120 130 140 150 160 170 180

C

SRS 4.981 4.541 4.186 3.971 3.672 3.435 3.298 3.091 2.942 2.833 2.766 2.727 2.613 2.526 49.95

CES 4.677 4.314 4.030 3.820 3.721 3.622 3.479 3.316 3.190 3.086 3.023 2.946 2.906 2.871 52.26

CSS 7.541 7.079 6.682 6.289 5.950 5.536 5.224 5.001 4.748 4.487 4.381 4.275 4.188 4.080 68.54

PACE 1.867 1.631 1.892 1.769 1.390 1.640 1.765 1.741 1.789 1.648 1.755 1.368 1.482 1.335 —

R

SRS 4.245 3.888 3.572 3.409 3.186 3.057 2.940 2.847 2.705 2.585 2.522 2.402 2.257 2.162 54.53

CES 3.603 3.306 3.076 2.846 2.671 2.520 2.462 2.323 2.183 2.123 2.125 2.074 1.998 1.918 46.03

CSS — — — — — — — — — — — — — — —

PACE 3.604 2.465 1.656 2.163 1.692 1.445 1.087 0.946 1.229 1.029 0.600 0.681 0.844 0.717 —

∗Rows “C” and “R” represent the average results on all the classification models and regression models, respectively.

Please note that CSS cannot be applied to multi-label classification models, and thus the average results of CSS for

classification models do not include DeepSpeech and the average improvement of PACE over CSS for classification

models also do not include DeepSpeech.

Table 6. Effectiveness Comparison among PACE, SRS, CES, and CSS in Terms of the Average

MSE Values (%) for High-accuracy Models and Low-accuracy Models

Acc. App. Number of selected test inputs ⇑I m (%)

50 60 70 80 90 100 110 120 130 140 150 160 170 180

High

SRS 2.846 2.519 2.283 2.203 2.107 1.922 1.829 1.719 1.640 1.576 1.564 1.533 1.450 1.405 57.82

CES 2.841 2.606 2.420 2.263 2.196 2.085 2.028 1.960 1.878 1.821 1.792 1.753 1.744 1.706 61.76

CSS 2.654 2.476 2.231 2.104 2.044 1.992 1.844 1.792 1.692 1.634 1.662 1.608 1.548 1.488 58.34

PACE 1.299 0.950 0.987 1.121 0.812 0.855 0.860 0.503 0.622 0.569 0.684 0.582 0.677 0.721 —

Low

SRS 6.448 5.950 5.513 5.208 4.772 4.541 4.376 4.140 3.935 3.782 3.671 3.587 3.433 3.308 48.66

CES 5.735 5.294 4.953 4.688 4.528 4.414 4.237 4.006 3.836 3.711 3.650 3.553 3.469 3.417 46.46

CSS 10.962 10.301 9.798 9.218 8.685 8.017 7.590 7.248 6.887 6.484 6.284 6.142 6.036 5.895 70.60

PACE 3.150 2.593 2.549 2.500 2.018 2.214 2.219 2.421 2.518 2.275 2.128 1.717 1.869 1.570 —

∗Rows “High” and “Low” represent the average results on all the high-accuracy models and low-accuracy models, re-

spectively. Since CSS cannot be applied to regression models and multi-label classification models, the results of CSS and

the improvement of PACE over CSS are based on all the corresponding classification models except DeepSpeech.

selected test inputs. The average MSE values of PACE only range from 1.335% to 1.892%, improving
the effectiveness by 49.95%, 52.26%, and 68.54% compared with SRS, CES, and CSS, respectively.
For regression models, PACE also outperforms all the three compared approaches at almost all the
studied numbers of selected test inputs (except 50) on average. For 50, the average MSE value of
PACE (i.e., 3.604%) is just slightly larger than the best effectiveness (i.e., 3.603%). Also, the aver-
age improvements of PACE compared with SRS and CES achieve 54.53% and 46.03%, respectively.
These results demonstrate that, regardless of classification models and regression models, PACE
has extremely small deviation for estimating the accuracy of the whole testing set using a small
number of selected test inputs.

Effectiveness on high-accuracy models and low-accuracy models. We then analyzed the
effectiveness of PACE for the models with different accuracy, since in practice the models with
various accuracy may exist. Table 6 shows the average results of PACE on high-accuracy models
and low-accuracy models. From this table, we found that PACE is able to outperform all the com-
pared approaches at each studied number of selected test inputs on average for both high-accuracy
models and low-accuracy models, achieving at least 46.46% improvements. More specifically, for

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:20 J. Chen et al.

Table 7. Effectiveness Comparison Among PACE, SRS, CES, and CSS in Terms of the Average

MSE Values (%) for Different Types of Test Inputs

Type App. Number of selected test inputs ⇑I m (%)

50 60 70 80 90 100 110 120 130 140 150 160 170 180

Ori.

SRS 3.687 3.285 3.049 2.877 2.743 2.57 2.452 2.325 2.211 2.113 2.071 1.998 1.892 1.836 54.05

CES 3.598 3.312 3.05 2.861 2.798 2.655 2.555 2.428 2.313 2.208 2.14 2.076 2.059 2.007 55.60

CSS 4.872 4.565 4.207 4.139 4.046 3.905 3.629 3.537 3.306 3.137 3.065 3.042 2.986 2.903 67.04

PACE 1.654 1.178 1.389 1.424 1.018 0.870 0.857 0.988 0.962 1.039 1.233 0.891 1.133 1.148 —

Mut.

SRS 5.503 5.089 4.656 4.468 4.153 3.998 3.863 3.713 3.522 3.358 3.266 3.112 2.926 2.809 56.99

CES 4.612 4.246 3.981 3.674 3.462 3.267 3.174 2.970 2.802 2.727 2.736 2.668 2.577 2.481 48.29

CSS — — — — — — — — — — — — — — —

PACE 4.610 3.029 1.990 2.536 1.971 1.798 1.342 1.222 1.752 1.448 0.682 0.776 1.000 0.740 —

Gen.

SRS 7.429 6.775 6.233 6.059 5.463 5.014 4.668 4.317 4.142 4.034 3.844 3.845 3.703 3.503 41.00

CES 6.846 6.174 5.813 5.571 5.271 5.267 5.006 4.728 4.676 4.495 4.376 4.253 4.083 4.045 44.52

CSS 13.205 12.396 11.737 10.627 9.848 8.652 8.395 7.902 7.657 7.137 7.104 6.832 6.602 6.595 67.38

PACE 1.630 2.346 2.850 2.576 1.656 2.907 3.889 3.424 3.726 3.084 3.024 2.425 2.490 1.921 —

∗Rows “Ori.,” “Mut.,” and “Gen.” represent the average results on all the original test inputs, mutated test inputs, and

automatically generated test inputs, respectively. Since CSS cannot be applied to regression models and multi-label

classification models, the results of CSS and the improvement of PACE over CSS are based on all the corresponding

classification models except DeepSpeech. In particular, since the models with mutated test inputs are all regression

models in our study, CSS cannot be applied to them.

the low-accuracy models produced via mutation (ID: 4 ∼ 6), the existing work has demonstrated
that CES performs better than CSS and SRS, and our study further demonstrated that PACE out-
performs the state-of-the-art CES as shown in Table 2. Moreover, from Table 2, for the real-world
low-accuracy model (ID: 9, 22, and 23), PACE performs the best among all the approaches for
each studied number of selected test inputs. That is, PACE is able to outperform the other three
approaches for both mutated low-accuracy models and real-world low-accuracy models.

Effectiveness on different types of test inputs. We further analyzed the effectiveness of PACE
for different types of test inputs (including original test inputs, mutated test inputs, and automati-
cally generated test inputs), whose results are shown in Table 7. From this table, we found that on
average, PACE performs the best among all the approaches at each studied number of selected test
inputs for various types of test inputs, and all the average improvements of PACE over the other
approaches are larger than 41.00%. More specifically, from Table 3, for the mutated test inputs (ID:
13∼16), we first confirmed the conclusion from the existing work [55], i.e., CES outperforms SRS
in this scenario. Also, we found that PACE performs better than both CES and SRS in most cases,
demonstrating the effectiveness of PACE for the mutated test inputs. For the automatically gener-
ated test inputs (ID: 18 ∼ 21), our work is the first one to investigate the effectiveness of various
selection approaches in this scenario. We found that PACE also outperforms the other three ap-
proaches, and surprisingly, the baseline SRS performs better than the state-of-the-art CES and CSS
for the automatically generated test inputs. To sum up, PACE is able to stably perform the best for
various types of test inputs.

Efficiency comparison. It is also interesting to investigate the efficiency of these approaches.
We reported the time cost spent on selection for each approach on each subject in Table 8, where
we recorded the time cost spent on selecting 180 test inputs as the representative. From this table,
although the average, minimum, and maximum time costs spent on selecting 180 test inputs on
all the subjects for PACE are larger than those for the other three compared approaches, PACE

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:21

Table 8. Efficiency Comparison Among PACE,

SRS, CES, and CSS in Terms of the Time Cost

Spent on Selecting 180 Test Inputs (Minutes)

ID SRS CES CSS PACE

1 2.667E-06 0.043 0.040 6.518
2 9.200E-06 0.030 0.040 3.238
3 1.667E-06 0.021 0.034 1.267
4 2.333E-06 0.028 0.034 1.202
5 4.633E-06 0.028 0.034 1.092
6 3.667E-06 0.028 0.034 1.197
7 2.983E-06 0.340 0.596 0.547
8 3.733E-06 0.421 0.794 1.437
9 3.917E-06 1.479 2.761 3.335
10 1.667E-05 0.068 0.101 9.650
11 3.667E-06 0.052 — 0.153
12 3.333E-06 0.099 — 0.452
13 2.767E-06 0.052 — 0.227
14 2.767E-06 0.096 — 0.317
15 3.100E-06 0.064 — 0.142
16 2.983E-06 0.033 — 0.583
17 1.717E-06 0.029 0.027 3.342
18 2.750E-06 0.033 0.034 4.157
19 3.317E-06 0.420 0.808 3.155
20 2.867E-06 0.040 0.037 1.237
21 1.750E-06 0.036 0.028 1.542
22 2.026E-05 36.372 29.327 46.138
23 1.965E-05 22.552 20.945 26.587
24 1.931E-05 2.594 — 16.395
Avg. 5.905E-06 2.707 3.275 5.579
Min. 1.667E-06 0.021 0.027 0.142
Max. 2.026E-05 36.372 29.327 46.138
Std. 6.038E-06 8.329 8.137 10.339

just spent several minutes, which is acceptable in practice. In particular, the most costly part of
PACE is clustering, but it is performed only once in the beginning and then the selection part is
incrementally performed based on the clustering result. That is, the time cost of PACE does not
largely increase when the required number of selected test inputs increases. By taking subject 24
(DeepSpeech based on Speech-Commands) as an example, when the number of selected test inputs
is 180, the time cost of PACE is 16.395 min while when the number of selected test inputs is 1,000,
the time cost of PACE is 17.363 min, which further confirms the above hypothesis.

In summary, PACE is able to precisely estimate the accuracy of the whole testing set using a
small number of selected test inputs with only 1.181%∼2.302% deviations on average, significantly
outperforming all the three compared approaches. In particular, PACE achieves great effectiveness
for various types of models and various types of test inputs, fitting complex scenarios in practice
very well. Therefore, PACE is indeed a practical approach with the best effectiveness and accept-
able efficiency.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:22 J. Chen et al.

Fig. 4. The MSE values of PACE with different features.

Fig. 5. The MSE values of PACE with different α values.

5.2 Impact of Different Features

We investigated the impact of different features on PACE, whose results are shown in Figure 4.
In this figure, the x-axis represents the different numbers of selected test inputs and the y-axis
represents the MSE values. The box plots show the median and interquartile ranges of the MSE
values on all the subjects. From this figure, we found that the CON feature performs the worst
among the four types of features, because CON is actually the prediction result for a test input and
cannot reflect the testing capability of the test input well. For the other three types of features,
ORI and our default setting LHL perform better than FL. That demonstrates that LHL indeed is a
good choice for the default setting of PACE. In the meanwhile, the most basic feature ORI performs
surprisingly good, indicating that such basic feature is enough to reflect the testing capabilities of
test inputs well. In particular, ORI is a kind of static features, and thus it provides an opportunity
to make PACE more efficient by avoiding running the DNN models.

5.3 Impact of Threshold α

We investigated the impact of different values of the threshold α , whose results are shown in
Figure 5. From this figure, we found that the α values setting of 0.5 performs the worst among all
the α values. This is because the size of the minority space tends to be smaller than that of the
grouped test inputs actually, and thus this setting leads to poor performance. Moreover, we found

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:23

Fig. 6. The MSE values of PACE with different dimension numbers of FastICA.

Fig. 7. The MSE values of PACE with different dimension reduction algorithms.

that the α values of 0.7 and 0.8 perform relatively better than those of 0.6 and 0.9, indicating the
effectiveness of the default threshold α in PACE. Also, we found that for different subjects, the best
α values may be different, and thus in the future we plan to propose to set the α value dynamically
by considering the characteristics of the used subject.

5.4 Impact of Dimension Reduction

We investigated the impact of different dimension numbers of the FastICA algorithm on PACE,
whose results are shown in Figure 6. Here, we studied four different dimension numbers and the
case without dimension reduction (represented by “original” in Figure 6). From this figure, we
found that PACE without dimension reduction performs the worst, demonstrating that dimension
reduction indeed improves the effectiveness of PACE. Also, with the dimension number decreas-
ing, the effectiveness of PACE becomes better in general. The reason is that the performance of
HDBSCAN can be affected by the dimension of features. When the dimension of features is high,
its performance could be largely decreased [66]. Therefore, according to Figure 6, setting the di-
mension number to be 2 is a reasonable choice, and achieves the best effectiveness among all the
studied dimension numbers in general.

We then investigated the impact of different dimension reduction algorithms on PACE, whose
results are shown in Figure 7. From this figure, we found that FastICA performs the best among

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:24 J. Chen et al.

Fig. 8. Comparison results between PACE and its variants in terms of the MSE values.

the four studied dimension reduction algorithms, demonstrating that FastICA is indeed a good
choice for dimension reduction in PACE. This is because FastICA aims to find independent compo-
nents and is able to find underlying factors, while the other three dimension reduction algorithms
fail to find those underlying factors. Therefore, FastICA performs better than them. Actually, our
approach PACE is not specific to FastICA. For example, in Figure 7, NMF achieves similar effec-
tiveness to FastICA when the number of selected test inputs is small. Therefore, it is also possi-
ble to use other effective dimension reduction algorithms to further improve the effectiveness of
PACE. Currently, we used FastICA as the default dimension reduction algorithm in PACE due to its
effectiveness.

5.5 Contribution of Each Component in PACE

PACE consists of three main components: clustering, MMD-critic-based selection, and adaptive
random selection. We investigated the contribution of each component in PACE, whose results
are shown in Figure 8. From this figure, first of all, we found that PACE performs better than all
the four variants of PACE, demonstrating the contributions of all the components. By comparing
PACE

д

r and
and PACEm

r and
the former performs worse than the latter, indicating that the MMD-

critic-based selection for groups is more important than the adaptive random selection for the
minority space. This is as expected, because the size of the grouped test inputs is larger than that
of the minority space, and thus the selection method for the former makes more contributions.
In addition, by comparing PACEmmd and PACEar t , the former performs worse than the latter,
indicating that without clustering the adaptive random selection method is able to achieve better
effectiveness than the MMD-critic-based selection method for the whole testing set. This is because
without clustering, all the test inputs with different testing capabilities are mixed together, and
the adaptive random selection method is more likely to select the test inputs with various testing
capabilities by selecting the test inputs with the largest distances.

6 DISCUSSION

6.1 Extensions of PACE

Our experiments have demonstrated that PACE achieves great effectiveness for estimating the
accuracy of the whole testing set by selecting a small number of test inputs. There are some possible
directions to further improve PACE.

First, as demonstrated by Section 5.2, the static feature ORI is able to achieve the similar effec-
tiveness with our default setting of LHL. Each of them can perform better than the other in some

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:25

cases. Therefore, it is intuitive that combining them may produce better effectiveness. In particu-
lar, we made the first attempt to combine LHL and ORI by simply concatenating the two feature
vectors for each test input, and then conducted a preliminary study using the two DNN models
(i.e., VGG-16 and ResNet-20) with the testing set CIFAR-10. The experimental results showed that
the average deviation achieved by PACE with the combined features on the two models at all the
studied numbers of selected test inputs is 0.299%, improving PACE with the default LHL feature
by 13.80%. That demonstrated that combining them is indeed a promising direction to improve
PACE. In the future, we will explore more effective methods to combine different types of features
to further improve PACE.

Second, in PACE the HDBSCAN algorithm is adopted to perform clustering due to several rea-
sons presented in Section 3.2. However, the efficiency of PACE performs worse than the compared
approaches due to the cost of clustering. In the future, we may explore other clustering algorithms
with very low overhead to make PACE more practical. In addition, it is possible for the HDBSCAN
algorithm to produce the extreme case that almost all the test inputs are not clustered into any
group due to its noise-assignment-supporting mechanism [66]. Such poor performance of cluster-
ing may lead to poor performance of PACE. However, such extreme case is rare, even does not
occur in our study for all the used 24 pairs of DNN models and testing sets. In case such extreme
case occurs, we can try to relieve it by tuning the parameters of this algorithm or using other
effective clustering algorithms.

Third, the current goal of PACE is to precisely estimate the accuracy of the whole testing set,
which is a single-objective problem. In practice, there are several objectives that are required to
be satisfied, e.g., keeping the same coverage with the whole testing set. In the future, we plan to
extend PACE to solve the problem of test input selection with multiple objectives.

Fourth, in our study we evaluated the performance of PACE in the domains of normal image
classification, autonomous driving, and speech-to-text engine, but our approach could be general-
ized to more other domains such as natural language processing. This is because PACE only relies
on input features, e.g., the output of the last hidden layer in a DNN (LHL features), and it is feasible
for all the inputs to extract these features. In the future, we will further evaluate the performance
of PACE in various domains.

6.2 Threats to Validity

The internal threat to validity mainly lies in the implementations of PACE and the compared ap-
proaches, and the experimental scripts in our study. To reduce this threat, we adopted the im-
plementations of the compared approaches released by the authors, implemented PACE based on
some existing libraries (presented in Section 4.4), and carefully checked the code of our approach
PACE and experimental scripts.

The external threats to validity mainly lie in the DNN models under test and the testing sets
used in our study. Regarding the used DNN models, we adopted the models trained based on
popular datasets (including MNIST, CIFAR-10, CIFAR-100, SVHN, Driving, Fashion-MNIST, Ima-
geNet, and Speech-Commands). To reduce the threat from the DNN models, we considered differ-
ent types of models from several aspects, including classification models and regression models,
high-accuracy models and low-accuracy models (real-world low-accuracy models and mutated
low-accuracy models), and CNN models and a RNN model (i.e., DeepSpeech). Regarding the used
testing sets, we also considered different types of test inputs, including the original test inputs, the
mutated test inputs, and the automatically generated test inputs. To further reduce these threats,
we will apply PACE to more DNN models and testing sets with great diversity in the future.

The construct threats to validity main lie in the parameters in PACE, randomness, the mea-
surements used in our study, the studied numbers of selected test inputs, the used method for

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:26 J. Chen et al.

Table 9. Effectiveness Comparison Among PACE, SRS, CES, and CSS in Terms of Estimating

Top-5 Accuracy by Taking Subjects 22 and 23 as Examples

ID App. Number of selected test inputs ⇑I m (%)

50 60 70 80 90 100 110 120 130 140 150 160 170 180

22

SRS 5.088 4.890 4.730 4.602 4.394 3.863 3.307 3.222 3.164 2.948 3.008 2.883 2.725 2.676 48.29
CES 4.608 4.288 4.266 4.185 4.112 4.100 4.137 3.890 3.893 3.841 3.766 3.582 3.582 3.411 49.57
CSS 7.141 6.382 5.681 5.948 5.947 5.353 5.094 5.006 4.720 4.345 4.064 4.102 3.900 3.639 62.17
PACE 4.632 5.060 3.464 3.464 1.724 1.337 2.689 1.386 0.375 0.747 1.169 0.942 0.655 0.936 —

23

SRS 4.384 4.087 3.602 3.458 3.408 3.077 2.873 2.873 2.707 2.513 2.546 2.388 2.496 2.487 29.28
CES 4.128 3.849 3.823 3.621 3.477 3.271 2.945 3.029 3.049 2.999 2.673 2.477 2.436 2.396 30.98
CSS 6.347 5.863 5.322 4.704 4.300 3.603 3.488 3.358 3.342 2.974 2.864 3.058 3.068 3.046 45.40
PACE 4.449 5.531 3.697 3.357 2.118 2.068 2.027 1.915 1.891 1.870 0.553 0.616 1.187 1.209 —

automatically generating adversarial inputs, and the studied feature type. PACE involves several
parameters, such as the threshold α and the clustering parameters. Regarding the threshold α ,
we conducted a study to evaluate the impact of different α values, and the results demonstrate
that the default setting of α (i.e., 0.8) is a good choice (presented in Section 5.3). Regarding the
clustering parameters, we set them based on a small dataset and used the same parameters for
all the subjects. Also, our used clustering algorithm HDBSCAN is demonstrated to be robust to
parameter selection. We presented the specific settings of the parameters in Section 4.4. Moreover,
in Section 4.4 we also presented the conditions of applying dimension reduction. In the future,
we will further investigate the impact of these parameters. To reduce the threat from randomness
involved in our study (including the three compared approaches and three variants PACE

д

r and
,

PACEm
r and

, PACEar t), we repeated each of them 50 times and calculated the effectiveness using
Equation (6). Regarding the measurements used in our study, we used both Mean-squared Errors

and the time cost spent on selection to measure the effectiveness and efficiency of each approach,
respectively. To reduce this threat, in the future we will use more metrics to measure the effective-
ness of each approach more sufficiently, such as measuring the interpretability by communicating
with the persons that are responsible to label test inputs. In particular, the accuracy estimated by
both our work and the existing work [55] refers to Top-1 accuracy, and it is actually also interest-
ing to investigate the effectiveness of PACE for estimating Top-n accuracy. Here, we conducted an
experiment by taking subjects 22 and 23 and Top-5 accuracy as examples to investigate it, whose
results are shown in Table 9. From this table, in terms of estimating Top-5 accuracy, for subject 22
PACE improves the effectiveness by 48.29%, 49.57%, and 62.17% compared with SRS, CES, and CSS
on average, respectively, while for subject 23 PACE improves the effectiveness by 29.28%, 30.98%,
and 45.40% compared with SRS, CES, and CSS on average, respectively. The results demonstrate
that, regardless of Top-1 accuracy or Top-5 accuracy, PACE is able to significantly outperform all
the three compared approaches.

Regarding the studied numbers of selected test inputs, we studied 14 different numbers of se-
lected test inputs similar to the existing work [55] in our study, which range from 50 to 180 with
the interval of 10. However, the studied numbers may not represent other numbers of selected test
inputs. To reduce this threat, we further evaluated the effectiveness of PACE using larger numbers
of selected test inputs. Here, we take subjects 22 and 23 as examples and the number of selected
test inputs ranges from 100 to 1,000 with the interval of 100, whose results are shown in Table 10.
From this table, when the number of selected test inputs ranges from 100 to 1,000, PACE always
performs better than all the three compared approaches for both subjects 22 and 23. On average,
PACE improves the effectiveness by 68.33%, 64.79%, and 90.31% compared with SRS, CES, and CSS,

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:27

Table 10. Effectiveness Comparison Among PACE, SRS, CES, and CSS in Terms of the Average MSE

Values (%) When the Selected Number Ranges from 100 to 1,000 by Taking ImageNet as an Example

ID App. Number of selected test inputs ⇑I m (%)

100 200 300 400 500 600 700 800 900 1,000

22

SRS 4.315 2.730 1.569 1.625 1.586 1.511 1.429 1.415 1.224 1.352 68.33
CES 4.629 2.478 2.478 1.452 0.631 0.851 0.930 0.827 0.951 1.369 64.79
CSS 8.548 7.395 7.103 6.395 5.070 3.478 3.556 4.083 3.687 3.595 90.31
PACE 0.185 1.124 1.495 1.139 0.200 0.289 0.556 0.024 0.103 0.340 —

23

SRS 5.538 3.802 3.417 1.734 2.036 1.382 1.691 1.896 1.901 1.397 68.08
CES 4.629 2.548 3.282 2.414 2.975 3.019 2.789 2.152 2.064 1.985 73.67
CSS 6.126 4.411 5.375 3.508 1.473 1.415 2.570 1.692 1.730 1.353 69.68
PACE 0.647 1.102 0.599 1.26 1.466 0.067 0.020 0.016 0.488 1.166 —

Table 11. Effectiveness Comparison Among PACE, SRS, CES, and CSS in Terms of the Average MSE

Values (%) When Using FGSM and C&W by Taking CIFAR-10 and ResNet-20 as an Example

Adv. App. Number of selected test inputs ⇑I m (%)

50 60 70 80 90 100 110 120 130 140 150 160 170 180

FGSM

SRS 6.362 5.300 5.000 4.508 4.853 4.285 3.972 4.338 4.327 4.118 3.660 3.588 3.732 3.498 48.94

CES 6.656 6.122 5.432 5.292 5.273 4.866 4.956 5.049 4.891 4.695 4.540 4.560 4.409 4.191 54.97

CSS 12.193 11.577 10.722 10.330 10.062 9.147 8.603 8.709 8.116 8.338 7.703 7.421 7.552 7.844 75.89

PACE 5.585 7.840 6.220 4.090 2.840 1.426 0.113 0.493 0.532 0.697 0.493 1.259 1.278 1.604 —

C&W

SRS 7.533 6.722 5.748 5.498 5.083 4.834 5.118 5.076 4.677 4.647 4.685 4.448 4.250 4.353 66.66

CES 6.881 6.425 5.804 5.440 5.028 4.641 4.696 4.923 4.423 4.224 3.984 3.784 3.537 3.350 63.43

CSS 12.953 11.762 11.165 9.922 9.171 8.813 8.486 7.431 7.455 7.148 6.067 5.664 5.129 5.100 78.46

PACE 7.160 3.827 1.446 2.160 1.604 1.160 0.113 1.173 0.237 1.411 1.507 1.590 1.664 1.173 —

respectively, for subject 22, while improves the effectiveness by 68.08%, 73.67%, and 69.68% com-
pared with SRS, CES, and CSS, respectively, for subject 23. The results demonstrate that PACE also
performs the best among all these approaches when the number of selected test inputs is large.

Regarding the used method for automatically generating adversarial inputs, we have evaluated
the effectiveness of PACE on the testing sets including adversarial inputs generated via Basic It-
erative Method (BIM) in our study (ID: 18-21). However, this adversarial input generation method
may not represent other adversarial input generation methods. To reduce this threat, we further
investigated the effectiveness of PACE on the testing sets including adversarial test inputs gen-
erated via the other two widely used adversarial input generation methods, i.e., FGSM [33] and
C&W [10], by taking CIFAR-10 and ResNet-20 as an example following the process described in
Section 4.1. Table 11 shows the effectiveness of PACE on the testing sets including adversarial test
inputs generated via the two adversarial input generation methods (i.e., FGSM and C&W). From
this table, we found that PACE still performs the best among all the compared approaches on av-
erage when using both FGSM and C&W, and all the average improvements of PACE over the other
approaches are larger than 48.94%, demonstrating the effectiveness of PACE when using different
adversarial input generation methods.

Regarding the studied feature type, we used input features in PACE rather than coverage fea-
tures as explained in Section 3.1. Here, we conducted an experiment to further investigate whether
coverage features can perform better than input features. In particular, besides CSS and CES, Li
et al. [55] also preliminarily studied the effectiveness of coverage features (i.e., surprise cover-
age [45], the state-of-the-art coverage) used in a similar way to CSS. We call the method of surprise
coverage CSS-COV. Following this existing work [55], we also compared PACE with CSS-COV by

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:28 J. Chen et al.

Table 12. Effectiveness Comparison Between PACE and CSS-COV in Terms of the Average MSE Values

(%) by Taking the Subjects Whose ID Is 3 and 4 as Example

ID App. Number of selected test inputs ⇑I m (%)

50 60 70 80 90 100 110 120 130 140 150 160 170 180

3
CSS-COV 3.063 2.586 2.256 2.359 2.353 2.125 1.996 1.840 1.714 1.611 1.527 1.455 1.388 1.336 72.65

PACE 0.603 0.319 0.088 0.070 0.245 0.320 0.419 0.487 0.551 0.611 0.653 0.703 0.732 0.764 —

4
CSS-COV 8.437 7.617 7.033 6.377 6.025 5.973 5.877 5.749 5.480 5.244 4.759 4.785 4.747 4.842 61.68

PACE 4.470 3.803 3.569 2.748 3.616 2.470 2.288 2.823 1.720 1.899 1.803 1.095 0.470 0.580 —

taking the subjects whose ID is 3 and 4 as example following the existing work [55], whose re-
sults are shown in Table 12. From this table, we found that PACE always performs better than
CSS-COV at each studied number of selected test inputs for both of the subjects, and the average
improvements of PACE over CSS-COV are 72.65% and 61.68% for the two subjects, respectively.
The results demonstrate that the effectiveness of coverage features is not good to some degree,
which is consistent with the conclusion from the existing work [55].

7 RELATED WORK

7.1 Deep Neural Network Testing

Besides improving the efficiency of DNN testing, there are a large number of studies focusing on
proposing various metrics to measure test adequacy for DNN and designing various approaches
to generate adversarial inputs in the literature [26, 40, 60–62, 73, 95, 98, 103, 107, 112, 115, 116].

Regarding to DNN testing metrics, Pei et al. [73] proposed the metric of neuron coverage and a
white-box testing framework based on this metric. Ma et al. [60] further proposed Deepgauge, a set
of multi-granularity testing metrics for DNN. Kim et al. [45] proposed SADL to measure the test
adequacy for DNN, including SA (Surprise Adequacy) and SC (Surprise Coverage). Du et al. [26]
proposed two similarity metrics and five coverage criteria for stateful DL systems by modeling
an RNN as Discrete-time Markov Chain. Gerasimou et al. [30] proposed the Importance-driven
Coverage criterion to cover various combinations of the behaviors of important neurons. Sekhon
and Fleming [87] proposed a coverage criterion to capture all possible parts of the logic of DNN.
Also, Du et al. [27] and Ma et al. [59] proposed state coverage and t-way combination coverage for
DNN, respectively.

Regarding to adversarial input generation, Xie et al. [103] proposed Deephunter, which is a
coverage-guided fuzz testing framework for DNN. It generates new semantically retained test in-
puts through metamorphic testing. Guo et al. [35] proposed to maximize the neuron coverage and
generate more adversarial inputs via mutation and differential testing. Sun et al. [94] utilized con-
colic testing to generate test inputs for DNN. Wang et al. [97] proposed to find adversarial inputs
by proposing a measure of sensitivity and integrating statistical hypothesis and model mutation.
Zhang et al. [113] proposed a condition-guided adversarial generative testing tool, called CAGTest,
to efficiently generate test inputs for DNN, and CAGTest does not generate a large number of in-
valid test inputs. Currently, adversarial input generation has been widely used in various fields,
including image recognition [9, 32, 38, 102], natural language processing [56, 72, 82], and speech
recognition [74, 84, 106].

Different from them, our work aims to improve the efficiency of DNN testing by reducing label-
ing costs. More specifically, our work proposed PACE to select a small set of test inputs that can
precisely estimate the accuracy of the whole testing set for DNN and then reduce labeling costs
by just labeling this small set.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:29

In addition, there are some related work to ours in DNN space. Active learning is a semi-
supervised method, between unsupervised (i.e., 0% labeled data) and fully supervised (i.e., 100%
labeled data) in terms of the amount of labeled data for training [67, 88]. More specifically, active
learning aims to iteratively label a small set of data for training to achieve similar (or greater)

performance to using a fully supervised training set. For example, Lewis and Gale [51] proposed
to select the data for labeling, whose label has the largest uncertainty. Bouneffouf [8] proposed
a sequential algorithm called exponentiated gradient (EG)-active to improve the selection of data
for labeling by an optimal random exploration. However, different from active learning, our work
aims to improve the DNN testing process by labeling a small number of test inputs to precisely

estimate the accuracy of the whole testing set. That is, both goal and usage scenario between our
work and active learning are totally different.

7.2 Test Optimization for Traditional Software

In traditional software testing [16, 58], test optimization is also an important direction to improve
the efficiency of testing, including topics on test selection, test prioritization, and test-suite reduc-
tion. Please refer to a survey by Yoo and Harman for more details [104].

Test selection in traditional testing refers to selecting and running tests that are affected by
software changes in regression testing, since the tests that are not affected by code changes should
have the same results with previous runs [31, 50, 76–78, 109]. For example, Gligoric et al. [31]
proposed a file-level dynamic test selection approach for Java projects based on the changes of
bytecode class files, while Legunsen et al. [49] conducted an extensive study to compare different
static test selection approaches. More recently, Zhang [108] proposed the first hybrid test selection
approach by combining the strengths of existing dynamic test selection approaches at different
granularities.

Test prioritization in traditional testing aims to prioritize all the tests to reveal software bugs
as early as possible [7, 12–14, 28, 39, 58, 80, 81, 86, 105]. For example, Li et al. [53] proposed a
search-based test prioritization approach by utilizing search-based algorithms to find the optimal
order of test execution based on code coverage information. Jiang et al. [42] proposed an adaptive
random test prioritization approach, which defines test distance to determine which test should
be selected as the next one during prioritization. Chen et al. [20] conducted an empirical study
to compare various test prioritization approaches and further proposed a machine-learning-based
approach to recommending the optimal test prioritization approach for a specific project based on
test distribution information.

Test-suite reduction aims to remove redundant tests from a test suite with respect to some test-
ing requirements (e.g., code coverage) [15, 23, 24, 79, 90, 110]. For example, Harrold et al. [36]
proposed a test-suite reduction approach by identifying the tests that are essential to cover some
statements, called essential tests. Gotlieb and Marijan [34] proposed to remove tests from a test
suite via searching among network maximum flows. Shi et al. [89] proposed to reduce a test suite
by utilizing killed mutants.

Our work is more closely related to the topic of test-suite reduction, since our work also tries to
reduce certain tests (although of different forms). Different from traditional test-suite reduction,
our work aims to select a small set of test inputs that can represent the accuracy of the whole
testing set for deep neural network testing, where the traditional test-suite reduction cannot apply
due to the intrinsic differences between deep neural networks and traditional software systems.

8 CONCLUSION

To improve the efficiency of deep neural network (DNN) testing, we aim to select a small set of
test inputs that can precisely estimate the accuracy of the whole testing set, and then just label

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:30 J. Chen et al.

this small set instead of the whole testing set. To achieve this goal, we propose PACE, a novel
and practical approach to selecting such a small set of test inputs. To make PACE more practi-
cal, PACE incorporates clustering to interpretably discriminate test inputs with different testing
capabilities into different groups, and then utilizes the MMD-critic algorithm to interpretably se-
lect prototypes from each group and borrows the idea of adaptive random testing to select test
inputs from the minority space (i.e., test inputs that are not clustered into any group) by consid-
ering diversity, to constitute the final small set of selected test inputs. We conducted an extensive
study to evaluate the performance of PACE based on 24 pairs of DNN models and testing sets. This
benchmark is comprehensive by considering different types of DNN models and different types of
test inputs. The results demonstrate that PACE achieves great accuracy estimation effectiveness
of only 1.181%∼2.302% deviations on average, significantly outperforming all the compared ap-
proaches (i.e., SRS, CES, and CSS) with the average improvements of 51.06%, 50.94%, and 70.12%,
respectively.

REFERENCES

[1] FastICA. 2019. Retrieved from https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition.

[2] HDBScan. 2019. Retrieved from https://pypi.org/project/hdbscan/.

[3] Keras. 2019. Retrieved from https://keras.io/.

[4] Github. 2019. MMD-critic algorithms. Retrieved from https://github.com/BeenKim/MMD-critic.

[5] scikit. 2019. scikit-learn. Retrieved from https://scikit-learn.org/stable/.

[6] Tensorflow. 2019. Retrieved from https://www.tensorflow.org/.

[7] Paul Ammann and Jeff Offutt. 2016. Introduction to Software Testing. Cambridge University Press.

[8] Djallel Bouneffouf. 2016. Exponentiated gradient exploration for active learning. Computers 5, 1 (2016), 1.

[9] Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2018. Decision-based adversarial attacks: Reliable attacks

against black-box machine learning models. In Proceedings of the 6th International Conference on Learning Represen-

tations.

[10] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In Proceedings of

the IEEE Symposium on Security and Privacy (SP’17). IEEE, 39–57.

[11] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. 2015. Deepdriving: Learning affordance for direct

perception in autonomous driving. In Proceedings of the IEEE International Conference on Computer Vision. IEEE,

2722–2730.

[12] Junjie Chen. 2018. Learning to accelerate compiler testing. In Proceedings of the 40th International Conference on

Software Engineering: Companion Proceeedings. 472–475.

[13] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie. 2017. Learning to prioritize test

programs for compiler testing. In Proceedings of the 39th International Conference on Software Engineering. 700–711.

[14] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and Bing Xie. 2016. Test case pri-

oritization for compilers: A text-vector-based approach. In 2016 IEEE International Conference on Software Testing,

Verification and Validation. 266–277.

[15] Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, and Bing Xie. 2017. How do assertions impact

coverage-based test-suite reduction? In Proceedings of the IEEE International Conference on Software Testing, Verifi-

cation and Validation. IEEE, 418–423.

[16] Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, Bing Xie, and Hong Mei. 2016. Supporting oracle

construction via static analysis. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering. 178–189.

[17] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng Gao, Zhangwei Xu, Yingnong Dang,

and Dongmei Zhang. 2019. An empirical investigation of incident triage for online service systems. In Proceedings

of the 41st International Conference on Software Engineering: Software Engineering in Practice. 111–120.

[18] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao, Zhangwei Xu, Yingnong Dang, and

Dongmei Zhang. 2019. Continuous incident triage for large-scale online service systems. In Proceedings of the 34th

IEEE/ACM International Conference on Automated Software Engineering. 364–375.

[19] Junjie Chen, Wenxiang Hu, Lingming Zhang, Dan Hao, Sarfraz Khurshid, and Lu Zhang. 2018. Learning to acceler-

ate symbolic execution via code transformation. In Proceedings of the 32nd European Conference on Object-Oriented

Programming. 6:1–6:27.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition
https://pypi.org/project/hdbscan/
https://keras.io/
https://github.com/BeenKim/MMD-critic
https://scikit-learn.org/stable/
https://www.tensorflow.org/

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:31

[20] Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang, Dan Hao, and Lu Zhang. 2018. Optimizing

test prioritization via test distribution analysis. In Proceedings of the 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 656–667.

[21] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and Xie Bing. 2018. Coverage

prediction for accelerating compiler testing. IEEE Trans. Softw. Eng. (2018).

[22] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H. Tse. 2010. Adaptive random testing: The ART of test

case diversity. J. Syst. Softw. 83, 1 (2010), 60–66.

[23] Tsong Yueh Chen and Man Fai Lau. 1998. A new heuristic for test suite reduction. Info. Softw. Technol. 40, 5–6 (1998),

347–354.

[24] Emilio Cruciani, Breno Miranda, Roberto Verdecchia, and Antonia Bertolino. 2019. Scalable approaches for test suite

reduction. In Proceedings of the 41st International Conference on Software Engineering. IEEE Press, 419–429.

[25] Jianhua Dai and Qing Xu. 2013. Attribute selection based on information gain ratio in fuzzy rough set theory with

application to tumor classification. Appl. Softw. Comput. 13, 1 (2013), 211–221.

[26] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deepstellar: Model-based quantitative

analysis of stateful deep learning systems. In Proceedings of the 27th ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering. 477–487.

[27] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Jianjun Zhao, and Yang Liu. 2018. Deepcruiser: Automated guided testing

for stateful deep learning systems. arXiv preprint arXiv:1812.05339 (2018).

[28] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2002. Test case prioritization: A family of empirical

studies. IEEE Trans. Softw. Eng. 28, 2 (2002), 159–182.

[29] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2016. Image style transfer using convolutional neural

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2414–2423.

[30] Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan. 2020. Importance-driven deep learning system

testing. arXiv preprint arXiv:2002.03433 (2020).

[31] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical regression test selection with dynamic file

dependencies. In Proceedings of the International Symposium on Software Testing and Analysis. 211–222.

[32] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and harnessing adversarial examples.

In Proceedings of the 3rd International Conference on Learning Representations.

[33] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and harnessing adversarial examples.

In Proceedings of the 3rd International Conference on Learning Representations.

[34] Arnaud Gotlieb and Dusica Marijan. 2014. FLOWER: Optimal test suite reduction as a network maximum flow. In

Proceedings of the International Symposium on Software Testing and Analysis. ACM, 171–180.

[35] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz: Differential fuzzing testing of deep

learning systems. In Proceedings of the 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. ACM, 739–743.

[36] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. 1993. A methodology for controlling the size of a test suite. ACM

Transactions on Software Engineering and Methodology 2, 3 (1993), 270–285.

[37] John A. Hartigan and Manchek A. Wong. 1979. Algorithm AS 136: A k-means clustering algorithm. J. Roy. Stat. Soc.

Series C (Appl. Stat.) 28, 1 (1979), 100–108.

[38] Warren He, Bo Li, and Dawn Song. 2018. Decision boundary analysis of adversarial examples. In Proceedings of the

6th International Conference on Learning Representations.

[39] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon. 2016. Comparing white-box and

black-box test prioritization. In Proceedings of the IEEE/ACM 38th International Conference on Software Engineering.

IEEE, 523–534.

[40] Qiang Hu, Lei Ma, Xiaofei Xie, Bing Yu, Yang Liu, and Jianjun Zhao. 2019. DeepMutation++: A mutation testing

framework for deep learning systems. In Proceedings of the 34th IEEE/ACM International Conference on Automated

Software Engineering (ASE). IEEE, 1158–1161.

[41] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A comprehensive study on deep learning

bug characteristics. In Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 510–520.

[42] Bo Jiang, Zhenyu Zhang, W. K. Chan, and T. H. Tse. 2009. Adaptive random test case prioritization. In Proceedings

of the 24th IEEE/ACM International Conference on Automated Software Engineering. 233–244.

[43] Kyle D. Julian, Jessica Lopez, Jeffrey S. Brush, Michael P. Owen, and Mykel J. Kochenderfer. 2016. Policy compression

for aircraft collision avoidance systems. In Proceedings of the IEEE/AIAA 35th Digital Avionics Systems Conference.

IEEE, 1–10.

[44] Been Kim, Rajiv Khanna, and Oluwasanmi Koyejo. 2016. Examples are not enough, learn to criticize! Criticism for

interpretability. In Proceedings of the 30th International Conference on Neural Information Processing Systems. 2288–

2296.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:32 J. Chen et al.

[45] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In

Proceedings of the 41st International Conference on Software Engineering. IEEE Press, 1039–1049.

[46] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial examples in the physical world. In Proceed-

ings of the 5th International Conference on Learning Representations Workshop Track.

[47] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent convolutional neural networks for text classification.

In 29th AAAI Conference on Artificial Intelligence.

[48] Daniel D. Lee and H. Sebastian Seung. 2001. Algorithms for non-negative matrix factorization. In Advances in Neural

Information Processing Systems. MIT Press, 556–562.

[49] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and Darko Marinov. 2016. An extensive

study of static regression test selection in modern software evolution. In Proceedings of the 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering. ACM, 583–594.

[50] Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic regression test selection. In Proceedings

of the 32nd IEEE/ACM International Conference on Automated Software Engineering. 949–954.

[51] David D. Lewis and William A. Gale. 1994. A sequential algorithm for training text classifiers. In Proceedings of the

17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Springer,

3–12.

[52] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating multiple fault diagnosis dimensions

for deep fault localization. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and

Analysis. 169–180.

[53] Zheng Li, Mark Harman, and Robert M. Hierons. 2007. Search algorithms for regression test case prioritization. IEEE

Trans. Softw. Eng. 33, 4 (2007), 225–237.

[54] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. 2019. Structural coverage criteria for neural networks could

be misleading. In Proceedings of the 41st International Conference on Software Engineering: New Ideas and Emerging

Results. IEEE Press, 89–92.

[55] Zenan Li, Xiaoxing Ma, Chang Xu, Chun Cao, Jingwei Xu, and Jian Lü. 2019. Boosting operational DNN testing

efficiency through conditioning. In Proceedings of the 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. ACM, 499–509.

[56] Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, and Wenchang Shi. 2018. Deep text classification can

be fooled. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. 4208–4215.

[57] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E. Alsaadi. 2017. A survey of deep neural

network architectures and their applications. Neurocomputing 234 (2017), 11–26.

[58] Yiling Lou, Junjie Chen, Lingming Zhang, and Dan Hao. 2019. Chapter one—A survey on regression test-case pri-

oritization. Advances in Computers 113 (2019), 1–46.

[59] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao. 2019. DeepCT: Tomographic combina-

torial testing for deep learning systems. In Proceedings of the IEEE 26th International Conference on Software Analysis,

Evolution and Reengineering. IEEE, 614–618.

[60] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu, et al.

2018. Deepgauge: Multi-granularity testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering. ACM, 120–131.

[61] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie, Li Li, Yang Liu, Jianjun Zhao,

et al. 2018. Deepmutation: Mutation testing of deep learning systems. In Proceedings of the IEEE 29th International

Symposium on Software Reliability Engineering. IEEE, 100–111.

[62] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. 2018. MODE: Automated neural

network model debugging via state differential analysis and input selection. In Proceedings of the 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.

ACM, 175–186.

[63] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang. 2019. NIC: Detecting adversarial

samples with neural network invariant checking. In Proceedings of the 26th Annual Network and Distributed System

Security Symposium.

[64] Wei Ma, Mike Papadakis, Anestis Tsakmalis, Maxime Cordy, and Yves Le Traon. 2019. Test selection for deep learning

systems. CoRR abs/1904.13195 (2019).

[65] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated testing for Android applications. In

Proceedings of the 25th International Symposium on Software Testing and Analysis. ACM, 94–105.

[66] Leland McInnes, John Healy, and Steve Astels. 2017. hdbscan: Hierarchical density-based clustering.J. Open Source

Softw. 2, 11 (2017), 205.

[67] Prem Melville and Raymond J. Mooney. 2004. Diverse ensembles for active learning. In Proceedings of the 21st Inter-

national Conference on Machine Learning. ACM, 74.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:33

[68] Bernard M. E. Moret and Henry D. Shapiro. 1992. An empirical assessment of algorithms for constructing a minimum

spanning tree. Computational Support for Discrete Mathematics 15 (1992), 99–117.

[69] Ziad Obermeyer and Ezekiel J. Emanuel. 2016. Predicting the future—Big data, machine learning, and clinical

medicine. New Engl. J. Med. 375, 13 (2016), 1216.

[70] Augustus Odena, Catherine Olsson, David Andersen, and Ian J. Goodfellow. 2019. TensorFuzz: Debugging neural

networks with coverage-guided fuzzing. In Proceedings of the 36th International Conference on Machine Learning.

4901–4911.

[71] Erkki Oja and Zhijian Yuan. 2006. The FastICA algorithm revisited: Convergence analysis. IEEE Trans. Neural Netw.

17, 6 (2006), 1370–1381.

[72] Nicolas Papernot, Patrick McDaniel, Ananthram Swami, and Richard Harang. 2016. Crafting adversarial input se-

quences for recurrent neural networks. In Proceedings of the IEEE Military Communications Conference (MILCOM’16).

IEEE, 49–54.

[73] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated whitebox testing of deep learn-

ing systems. In Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 1–18.

[74] Yao Qin, Nicholas Carlini, Garrison W. Cottrell, Ian J. Goodfellow, and Colin Raffel. 2019. Imperceptible, robust, and

targeted adversarial examples for automatic speech recognition. In Proceedings of the 36th International Conference

on Machine Learning. 5231–5240.

[75] J. Ross Quinlan. 1986. Induction of decision trees. Mach. Learn. 1, 1 (1986), 81–106.

[76] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia C. Chesley. 2004. Chianti: A tool for change

impact analysis of Java programs. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications. 432–448.

[77] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing regression test selection techniques. IEEE Trans. Softw.

Eng. 22, 8 (1996), 529–551.

[78] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test selection technique. ACM Trans.

Softw. Eng. Methodol. 6, 2 (1997), 173–210.

[79] Gregg Rothermel, Mary Jean Harrold, Jeffery Von Ronne, and Christie Hong. 2002. Empirical studies of test-suite

reduction. Softw. Test. Verificat. Reliabil. 12, 4 (2002), 219–249.

[80] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 1999. Test case prioritization: An em-

pirical study. In Proceedings IEEE International Conference on Software Maintenance. IEEE, 179–188.

[81] Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015. An information retrieval approach

for regression test prioritization based on program changes. In Proceedings of the 37th IEEE/ACM International Con-

ference on Software Engineering. 268–279.

[82] Suranjana Samanta and Sameep Mehta. 2017. Towards crafting text adversarial samples. arXiv preprint

arXiv:1707.02812 (2017).

[83] Stefan Schaal, Sethu Vijayakumar, and Christopher G. Atkeson. 1998. Local dimensionality reduction. In Advances

in Neural Information Processing Systems. MIT Press, 633–639.

[84] Lea Schönherr, Katharina Kohls, Steffen Zeiler, Thorsten Holz, and Dorothea Kolossa. 2019. Adversarial attacks

against automatic speech recognition systems via psychoacoustic hiding. In Proceedings of the 26th Annual Network

and Distributed System Security Symposium.

[85] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. 2017. DBSCAN revisited, revisited:

Why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42, 3 (2017), 19.

[86] Amanda Schwartz and Hyunsook Do. 2016. Cost-effective regression testing through adaptive test prioritization

strategies. J. Syst. Softw. 115 (2016), 61–81.

[87] Jasmine Sekhon and Cody Fleming. 2019. Towards improved testing for deep learning. In Proceedings of the

IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER’19).

IEEE, 85–88.

[88] Burr Settles and Mark Craven. 2008. An analysis of active learning strategies for sequence labeling tasks. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational

Linguistics, 1070–1079.

[89] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov. 2014. Balancing trade-offs in test-suite

reduction. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.

ACM, 246–256.

[90] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and combining test-suite reduction

and regression test selection. In Proceedings of the 10th Joint Meeting on Foundations of Software Engineering. ACM,

237–247.

[91] Qingkai Shi, Jun Wan, Yang Feng, Chunrong Fang, and Zhenyu Chen. 2019. DeepGini: Prioritizing massive tests to

reduce labeling cost. arXiv preprint arXiv:1903.00661.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

30:34 J. Chen et al.

[92] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition.

In Proceedings of the 3rd International Conference on Learning Representations.

[93] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. 2014. Deep learning face representation by joint

identification-verification. In Advances in Neural Information Processing Systems. MIT Press, 1988–1996.

[94] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. 2018. Concolic

testing for deep neural networks. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Soft-

ware Engineering. ACM, 109–119.

[95] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fer-

gus. 2014. Intriguing properties of neural networks. In Proceedings of the 2nd International Conference on Learning

Representations.

[96] András Vargha and Harold D. Delaney. 2000. A critique and improvement of the CL common language effect size

statistics of McGraw and Wong. J. Edu. Behav. Stat. 25, 2 (2000), 101–132.

[97] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019. Adversarial sample detection for deep

neural network through model mutation testing. In Proceedings of the 41st International Conference on Software

Engineering. IEEE Press, 1245–1256.

[98] Zan Wang, Ming Yan, Shuang Liu, Junjie Chen, Dongdi Zhang, Zhuo Wu, and Xiang Chen. 2020. A survey on testing

of deep neural networks. J. Softw. (2020). to appear.

[99] Pete Warden. 2017. Speech commands: A public dataset for single-word speech recognition. Retrieved from

http://download.tensorflow. org/data/speech_commands_v0.

[100] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Breakthroughs in Statistics. Springer, 196–202.

[101] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis. Chemometr. Intell. Lab. Syst. 2,

1–3 (1987), 37–52.

[102] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. 2018. Spatially transformed adversarial

examples. In Proceedings of the 6th International Conference on Learning Representations.

[103] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and

Simon See. 2019. DeepHunter: A coverage-guided fuzz testing framework for deep neural networks. In Proceedings

of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, 146–157.

[104] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection and prioritization: A survey. Softw.

Test. Verification Reliability 22, 2 (2012), 67–120.

[105] Zhe Yu, Jeffrey C. Carver, Gregg Rothermel, and Tim Menzies. 2019. Searching for better test case prioritization

schemes: A case study of AI-assisted systematic literature review. arXiv preprint arXiv:1909.07249.

[106] Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long, Xiaokang Liu, Kai Chen, Shengzhi Zhang, Heqing Huang,

XiaoFeng Wang, and Carl A. Gunter. 2018. Commandersong: A systematic approach for practical adversarial voice

recognition. In Proceedings of the 27th USENIX Security Symposium. 49–64.

[107] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing: Survey, landscapes and horizons.

IEEE Trans. Softw. Eng. (2020).

[108] Lingming Zhang. 2018. Hybrid regression test selection. In Proceedings of the IEEE/ACM 40th International Conference

on Software Engineering. IEEE, 199–209.

[109] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-inducing program edits based on

spectrum information. In Proceedings of the 27th IEEE International Conference on Software Maintenance. IEEE, 23–

32.

[110] Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. 2011. An empirical study of junit test-suite

reduction. In Proceedings of the IEEE 22nd International Symposium on Software Reliability Engineering. IEEE, 170–

179.

[111] Long Zhang, Xuechao Sun, Yong Li, and Zhenyu Zhang. 2019. A noise-sensitivity-analysis-based test prioritization

technique for deep neural networks. arXiv preprint arXiv:1901.00054.

[112] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. 2018. Deeproad: Gan-based

metamorphic testing and input validation framework for autonomous driving systems. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering. ACM, 132–142.

[113] Pengcheng Zhang, Qiyin Dai, and Shunhui Ji. 2019. Condition-guided adversarial generative testing for deep learn-

ing systems. In Proceedings of the IEEE International Conference On Artificial Intelligence Testing (AITest’19). IEEE,

71–72.

[114] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang, Chunyu Xie, Xinsheng Yang, Qian

Cheng, Ze Li, Junjie Chen, Xiaoting He, Randolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and Dong-

mei Zhang. 2019. Robust log-based anomaly detection on unstable log data. In Proceedings of the ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 807–817.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

http://download.tensorflow. org/data/speech_commands_v0

Practical Accuracy Estimation for Efficient Deep Neural Network Testing 30:35

[115] Zhiyi Zhang and Xiaoyuan Xie. 2019. On the investigation of essential diversities for deep learning testing criteria.

In Proceedings of the IEEE 19th International Conference on Software Quality, Reliability and Security (QRS’19). IEEE,

394–405.

[116] Husheng Zhou, Wei Li, Yuankun Zhu, Yuqun Zhang, Bei Yu, Lingming Zhang, and Cong Liu. 2020. Deepbillboard:

Systematic physical-world testing of autonomous driving systems. In Proceedings of the International Conference on

Software Engineering (ICSE’20).

Received October 2019; revised April 2020; accepted April 2020

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 30. Pub. date: October 2020.

