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Abstract—Microservice systems are typically fragile and fail-
ures are inevitable in them due to their complexity and large
scale. However, it is challenging to localize the root-cause metric
due to its complicated dependencies and the huge number of
various metrics. Existing methods are based on either correlation
between metrics or correlation between metrics and failures. All
of them ignore the key data source in microservice, i.e., logs.
In this paper, we propose a novel root-cause metric localization
approach by incorporating log anomaly detection. Our approach
is based on a key observation, the value of root-cause metric
should be changed along with the change of the log anomaly
score of the system caused by the failure. Specifically, our
approach includes two components, collecting anomaly scores
by log anomaly detection algorithm and identifying root-cause
metric by robust correlation analysis with data augmentation.
Experiments on an open-source benchmark microservice system
have demonstrated our approach can identify root-cause metrics
more accurately than existing methods and only require a short
localization time. Therefore, our approach can assist engineers
to save much effort in diagnosing and mitigating failures as soon
as possible.

I. INTRODUCTION

With the soaring increase of utilization of cloud infrastruc-
ture and large-scale systems, microservice architecture has
been widely used by more and more industrial companies
because of its independence to deploy and update [1]. Al-
though tremendous efforts have been devoted to guaranteeing
the service quality, microservice systems are typically fragile
and failures are inevitable in them due to their complexity and
large scale, which would cause huge economic loss or damage
user experience. For example, the loss of one-hour downtime
for Amazon.com on Prime Day in 2018 (its biggest sale event
of the year) is up to $100 million1. As a result, once a failure
happens, it is in an urgent need to locate the root cause and
mitigate the failure as soon as possible.

In general, in order to grasp the running status of the system
in real time, monitoring system will collect numerous metrics
(e.g., CPU utilization and network delay) and logs from each
microservice component. When the system fails, we need to
identify the root-cause metric, which is able to reflect the root
cause of the failure to a large degree. For example, when a
failure occurs due to limited resources, it would be helpful
to diagnose this failure by identifying the CPU utilization
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Fig. 1: An intuitive example to illustrate failure propagation
between two microservices.

of the microservice as the root-cause metric. However, nu-
merous metrics will behave abnormally due to complicated
dependencies and failure propagation among components. For
example, given a system consisting of 2 microservices shown
in Fig. 1, they interact with each other by sending requests
and messages. As each microservice has complex invocation
chains, a delay of network transmission in microservice A will
cause an irregular decrease of CPU utilization and response
rate of another service B, since B needs to get the requests
from A to conduct its own work. For A itself, some metrics
such as network velocity and time-delay may be influenced by
this failure. It is difficult to locate which microservice is the
troublemaker considering this propagation, much less to find
out the type of the failure. Besides, the failure propagation is
so quick that we cannot identify the root-cause metric by time
lag [2]. Therefore, it is challenging to locate the root-cause
metric from a mass of metrics.

In the literature, a great number of efforts have been devoted
to diagnose the failure and locate the root cause [3], [4],
[5], [6], [7]. All of these related works focus on either
correlation between metrics [3], [4] or correlation between
metrics and failures (events) [5], [6], [7]. However, all of them
ignore to make full use of other data sources in the monitor-
ing system, for example, system logs which record detailed
running information of each microservice. More specifically,
over the years, a large body of research efforts have been
dedicated to log anomaly detection and current log anomaly
detection has achieved great effectiveness [8], [9]. Therefore,
the technique of log anomaly detection can be leveraged to
obtain the abnormal degree (also called anomaly score) of
each microservice. If we can find a metric whose values have
a large correlation with the anomaly scores acquired from log
anomaly detection, this metric has the large possibility of being
the root-cause one. As far as we know, most system exceptions
in reality can be observed in both system logs and monitoring
indicators, including three types we introduced in IV. That is,
our key insight is to borrow the accumulated power of log
anomaly detection to facilitate the identification of the root-



cause metric.
With this insight, we propose our approach, mainly con-

sisting of two components Collecting Anomaly Scores and
Identifying Root-Cause Metric. In detail, we first adopt the
state-of-the-art log anomaly detection algorithm, DeepLog [8],
to obtain the anomaly scores of the system. Afterwards, due
to the data imbalance between normal time and abnormal
time, we conduct data augmentation (oversampling and adding
noise) for robust correlation analysis based on Mutual Infor-
mation. Finally, our approach provides a root-cause metric
ranking list for engineers based on the correlation results.

To evaluate the effectiveness of our proposed approach,
we conduct experiments based on a widely-used microservice
benchmark system named TrainTicket, which contains more
than 30 microservices [1]. We inject three types of failures on
the benchmark system, i.e, computing resources exhaustion,
network transmission delay, and network transmission abor-
tion. Our approach can identify the root-cause metric on top-
15 on average among hundreds of metrics, which outperforms
existing methods in terms of both effectiveness and efficiency.

To sum up, our work has the following major contributions:
• We propose a novel root-cause metric localization ap-

proach for failure diagnosis by incorporating log anomaly
detection.

• We creatively leverage the technique of data augmen-
tation for robust correlation analysis, which has been
demonstrated to be effective.

• We conduct experiments based on a widely-used bench-
mark system, demonstrating that our proposed approach
can identify the root-cause metric accurately and effi-
ciently compared with other baseline methods.

II. BACKGROUND

In this section, we first introduce some background about
microservice briefly. Then two kinds of key data sources, i.e.,
metrics and logs are introduced.

A. Microservice Architecture

Microservice architecture is a variant of the service-oriented
architecture (SOA) structural style that organizes a system as
many light-weighted, loosely-coupled, independently deployed
services and each is called a microservice [10]. Each microser-
vice is flexible, being able to be implemented using differ-
ent programming languages, database structures and environ-
ments. Therefore, rather than being a layer within a mono-
lithic application like traditional architecture, microservice is
suitable for a continuous processing of software development.
People could adjust the number of microservices to meet the
requirement of business [11]. It has become prevalent in the
industrial and business area, used by many Internet companies
such as Amazon, Google and Netflix.

B. Data Description

1) Metrics: Metric is a kind of time series data, having
a format of (timestamp, value) [12], collected from many
data sources, including but are not limited to network traces,

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

The Volume of Business

0 1000 2000 3000 4000 5000 6000
0

25

50

75

100

Time-Delay

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

Memory Utilization

0 1000 2000 3000 4000 5000 6000
0

50000

100000

150000

200000

Network Transmission Rate

Fig. 2: Some typical metrics collected from TrainTicket.

1. [Basic Information Service][Query For Station Id] Station Id: Shang Hai
2. [Basic Information Service][Query Train Type] Train Type: GaoTieOne
3. [Basic Information Service][Get Route By Id] Route ID：a3f256c1-0e43-4f7d-9c21
4. [Basic Information Service][Query For Price Config] RouteId:a3f256c1-0e43-4f7d-9c21 TrainType:

GaoTieOne
5. Response Result to String Response(status=1, msg=Success, data={id=719287d6-d3e7-4b54-9a92, 

trainType=GaoTieOne, routeId=a3f256c1-0e43-4f7d-9c21, basicPriceRate=0.7, 
firstClassPriceRate=1.0})

Raw log messages

Log Parser
Log templates Parameters

1. [Basic Information Service][Query For Station Id] Station Id: *
2. [Basic Information Service][Query Train Type] Train Type: *
3. [Basic Information Service][Get Route By Id] Route ID：*
4. [Basic Information Service][Query For Price Config] 

RouteId:* TrainType: *
5. Response Result to String Response(status=*, msg=*, 

data={id=*, trainType=*, routeId=*, basicPriceRate=*, 
firstClassPriceRate=*})

1. [Shang Hai]
2. [GaoTieOne]
3. [a3f256c1-0e43-4f7d-9c21]
4. [a3f256c1-0e43-4f7d-9c21,

GaoTieOne]
5. [1, Success, d719287d6-d3e7-4b54-

9a92, GaoTieOne, a3f256c1-0e43-
4f7d-9c21, 0.7, 1.0]

Fig. 3: An intuitive example to illustrate log parsing.

system logs and monitoring systems such as Prometheus2.
Metrics used to characterize the status of systems can be
usually divided into two categories, business-level metrics
(e.g., transaction volume) and machine-level metrics (e.g.,
CPU utilization). Fig. 2 presents some representative metrics
collected from the benchmark system used in our experiments.

2) Logs: Log is one of the most valuable data sources in
microservice. Compared with metrics, logs record more de-
tailed running information about the system as well as impor-
tant activities of users and events of interaction with hardware.
Usually, logs are generated using the “print” function with a
string template and detailed information as parameters. Thus
logs are unstructured or semi-unstructured texts, which brings
challenges to log analysis. Typically, these logs should be
properly parsed to extract the template and parameters for fur-
ther analysis. Fig. 3 presents an intuitive example to illustrate
log parsing. Many data-driven methods have been proposed
for log parsing [13], [14], such as SLCT[15], LogSig[16] and
IPLoM[17]. In our approach, we use Drain proposed in [18]
to extract log templates, which has shown better performance
both on accuracy and efficiency [18].

III. APPROACH

A. Overview

In this paper, we propose a novel approach to identifying the
root-cause metric by incorporating log anomaly detection. The
core idea is that a metric whose values have a large correlation

2https://prometheus.io/
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Fig. 4: The overall framework of our approach.

with the anomaly scores acquired from log anomaly detection,
has the large possibility of being the root-cause one.

Specifically, our approach shown in Fig. 4 has two key steps,
i.e., Collecting Anomaly Scores and Identifying Root-Cause
Metric. First, we make use of the state-of-the-art log anomaly
detection algorithm, DeepLog [8], to obtain the anomaly score
of the microservice system, which can be used to characterize
the abnormal degree of the system. Then we conduct the
correlation analysis based on Mutual Information [19] to
identify the root-cause metric. Before doing that, we first
need to align anomaly score and monitoring metrics. However,
considering the data imbalance existing in practice (normal
time is much longer than abnormal time), we adopt two data
augmentation methods to enhance the correlation analysis, so
as to obtain better results. Finally, our approach can provide a
ranking list based on the correlation score, which means the
probability ranking of each metric to be the root cause.

B. Collecting Anomaly Scores

As mentioned earlier, the existing root-cause metric local-
ization approaches are based on either correlation between
metrics or correlation between metrics and failures. However,
we novelly propose to make use of system logs and get system
anomaly scores via log anomaly detection, which requires a
chronologically ordered log sequence for every microservice.
In this way, we can localize the root-cause metric based on
the correlation between anomaly scores and metrics, which is
more comprehensive than existing methods.

In the literature, significant research efforts have been
devoted to log anomaly detection in the field of security and
system reliability, for example, clustering-based method [9],
Principle Component Analysis (PCA) [20], and invariant min-
ing [21]. In our approach, we adopt DeepLog [8], the state-
of-the-art log anomaly detection algorithm, which has shown
better performance compared with other methods. In detail,
DeepLog detects log anomalies from two perspectives. One
is the anomalous log template sequences and the other is
anomalous log parameters (log templates and log parameters
have been introduced in Section II-B2). Due to the limit of
space, more details about DeepLog can be found in [8].

In our approach, we directly adopt the log templates
anomaly detection in DeepLog. About the log parameter
anomaly detection, considering the large number of and the
large variety of log parameters, it is meaningless and time-
consuming to detect parameter anomalies for each kind of
log template, since the majority of parameters are strings
instead of numbers, which cannot be represented as time
series. Thus we only record the time interval between two logs
and regard the time interval as a kind of parameter, which also
mentioned in DeepLog [8]. Time interval anomaly detection
is intuitive based on one key observation: if a microservice
does not receive logs for a long time, it is likely to be
abnormal. Therefore, for each log l, DeepLog can output an
anomaly score AS(l) based on Eq.1, where ASt(l) and ASp(l)
are anomaly score of template sequences and time interval,
respectively. The value of weight (w) is set to 0.5 in our
experiments.

AS(l) = w ×ASt(l) + (1− w)×ASp(l) (1)

Finally, for each microservice, we can obtain a series of
anomaly scores. Based on the threshold given by engineers,
we can find the abnormal microservices and filter the root-
cause metric generated from the normal microservice. Finally,
we get a series of anomaly scores representing the abnormal
degree of the whole microservice system by computing the
mean value of all abnormal anomaly scores.

C. Identifying Root-Cause Metric

Intuitively, if we can find a metric whose values have a
higher correlation with the anomaly scores acquired from log
anomaly detection, this metric has a larger possibility of being
the root-cause one. Motivated by this observation, we identify
the root-cause metric based on the correlation analysis between
log anomaly scores and metrics.

1) Data Augmentation: Due to the imbalance between
normal data and abnormal data, directly applying correlation
analysis performs not well in our experiments. Therefore,
we leverage the idea of data augmentation, which has been
widely used in deep learning and computer vision [22], to
overcome the data imbalance problem. In detail, we adopt
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the following tricks, i.e., oversampling anomalies and adding
Gaussian noise.

Oversampling anomalies. Intuitively, because of data im-
balance (the normal time is much longer than abnormal time),
the correlation during normal time will account for a large part,
which will weaken the key correlation during the abnormal
time. However, what we really care about is the behavior of
this metric when the system failed. The most direct way of
reducing the negative influence caused by normal points is
simply increasing the number of anomalous points in the time
series. In our approach, we oversample the anomalous points
by expanding the length of abnormal time. Specifically, if the
abnormal length is L, we expand it into (1+α)L and α = 0.3
in our experiments. In Section IV-D1, we will further discuss
the influence of different expanded lengths (α) on the results.

Adding Gaussian noise. Adding noises is a popular method
for data augmentation, which can enhance the robustness of
the model and avoid overfitting effectively. Therefore, in our
approach, we add Gaussian noises in the log anomaly score
series and metrics. Besides, the values of noise intensity (the
variance of the Gaussian distribution) have an influence on
results, and we will discuss it in detail in Section IV-D1.

The above two tricks on data augmentation can significantly
improve the performance of correlation analysis, which will
also be demonstrated in Section IV-D1.

2) Correlation Analysis: After data augmentation, we con-
duct the correlation analysis between log anomaly score series
and each metric, so as to locate the root cause. In the field
of machine learning and statistical analysis, a large number
of correlation analysis methods have been proposed [23],
[24], for example, Pearson Coefficient, Kendall Coefficient,
Spearman Coefficient, Maximal Information Coefficient and
Mutual Information. Based on our observations and exper-
iments in Section IV-D2, we find that Mutual Information
(MI) achieves the best performance among these alternatives
because of its capability of catching non-linear dependency
and adaptation to various data. Besides, MI does not make

any assumptions about some attributes of the variables, such as
normal distribution. Therefore, we adopt Mutual Information
in our approach.

Mutual Information is commonly used to evaluate the
mutual dependence between two variables, which is initially
applied in the area of communication technology. More specif-
ically, let (X,Y ) be a pair of random variables, the Mutual
Information between them is defined as:

I(X,Y ) = H(Y )−H(Y |X) (2)

where H(Y ) represents the uncertainty of variable Y , which
was defined by Shannon as entropy with the following math-
ematical form:

H(Y ) =

∫
y

(p(y)) log (p(y)) (3)

Similarly, the conditional entropy H(Y |X) is defined as:

H(Y |X) =

∫∫
x,y

(p(x, y)) log (p(y|x)) (4)

Compared to Pearson Coefficient, MI can evaluate both
linear dependence and non-linear dependence, which makes
it more suitable for our problem. Calculating MI directly
according to its definition requires us to know the Probability
Density Function (PDF) of the variables we are interested in. It
is difficult because we only have finite samples in most cases.
[25] and [26] provide some novel methods to estimate the
probability density based on entropy estimation from k-nearest
neighbor distances. In this way, we can calculate MI between
the log anomaly score and each metric. Finally, our approach
can provide a metric ranking list based on the correlation
scores. According to our insight, a metric whose values have
a larger correlation with the anomaly scores acquired from log
anomaly detection, has a larger possibility of being the root
cause. Therefore, the metrics located on the top result are more
likely to be the root cause, so that engineers can examine each
metric one by one based on the result.

IV. EVALUATION

In this section, we aim to evaluate the performance of
our proposed approach and answer the following research
questions (RQs):

• RQ1: Is our approach effective in root-cause metric
localization compared with other baseline methods?

• RQ2: Does each component contribute (data augmenta-
tion and correlation analysis) to our approach?

• RQ3: What is the time efficiency of our approach?

A. Experiment Setup

We evaluate the performance of our approach based on
a medium-size open-source benchmark microservice system
named TrainTicket [27]. This platform serves as a system of
selling train tickets, which is based on microservice architec-
ture, containing 41 microservices including pay, price, order,
food, etc. Besides, as guided in [1], we can inject different
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kinds of failures manually to see if we can locate the root-
cause metric accurately based on the logs and metrics collected
from the benchmark system. In our evaluation, we implement
the injection of three types of failures.

Computing Resources Exhaustion. Stress-ng3 is a widely-
used tool to test the capability of a computer system to deal
with diverse types of stress. By running stress-ng in a desig-
native docker, the resource of computing may be extremely
scarce because of the existence of an extra process which
requires a large amount of computing resource. Therefore,
system running must be influenced. Fig. 6 presents some
abnormal metrics caused by computing resources exhaustion
injected in the food microservice, including CPU utilization,
memory utilization, time-delay and successful transaction rate.

CPU Utilization Memory Utilization

Writing Velocity of File System Network Receiving Rate

Time-Delay Successful Transaction Rate

Fig. 6: The behavior of metrics influenced by CPU exhaustion.

Network Transmission Delay. We inject HTTP delay
failure by istio4, which is designed to connect all microservices
in a more reliable and secure way. Intuitively, the network
delay will bring troubles to TrainTicket and some metrics,
like network transmit/receive rate.

Network Transmission Abortion. We also inject HTTP
abort failure by istio. In this case, the faulted microservice
cannot communicate with other components and network-
related metrics will be affected.

B. Evaluation Metrics

Intuitively, the output of our approach is the ranking list
of root-cause metrics, thus we adopt some popular metrics
used in ranking problem to evaluate the performance of our
approach. Specifically, we choose to use the top-k precision
and average ranking as evaluation metrics in our experiments.
Besides, we also take the running time of our approach into
consideration.

C. Performance of Root-cause Metric Localization

1) Baseline: We compare the effectiveness of our approach
on root-cause metric localization with three related baselines.

3https://kernel.ubuntu.com/ cking/stress-ng/
4https://istio.io/

ε-Diagnosis. The core idea of ε-Diagnosis [5] is to take the
metric during the adjacent period of the failure, and conduct ε-
statistics test based on energy distance with the normal metric.
The larger the statistical gap is, the more critical the metric
is to explain the failure. The approach is based on a premise
that the true root-cause metric must change drastically when
a failure occurs. In our problem, we use log anomaly score to
detect anomalies for ε-Diagnosis. We use sliding window to
get subsequences from a metric and maintain two sets, normal
subsequences set SN and abnormal subsequences set SA for
each metric. Two-sample test is adopted to help us determine
whether the two sets are different statistically. ε-Diagnosis uses
energy distance to calculate the distance between SA and SN :

ρ2(SA, SN ) =


cov2(SA,SN )√
σ2(SA)σ2(SN )

, σ2(SA)σ
2(SN ) > 0

0, σ2(SA)σ
2(SN ) = 0

(5)

Regression-based Analysis: Regression-based localization
method [6] assumes a latent linear relationship lies in anomaly
scores and metrics. That is to say, in our problem, given
the log anomaly score (y) as the dependent variable and all
metrics x1, · · · , xn, we assume that they satisfy the following
equation:

y = α+ β1x1 + β2x2 + · · ·+ βnxn + ε (6)

where ε is the residual error of this model. The coefficients
(β1, · · · , βn) quantify the contribution of a metric to anomaly
score. The larger βk is in absolute terms, the more significant
the k-th metric is, and we have more confidence to assert
that the k-th metric is root cause. As introduced in [6], lots of
regression models can be used, such as Possion regression and
ridge regression, etc., depending on the data distribution. We
choose ordinary least squares (OLS) used in [6], to determine
the importance of metrics by comparing the absolute values
of coefficients.

Correlating Events with Time Series: Similar to ε-
Diagnosis, both of them assume that if an event has a rela-
tionship with a time series, then this time series must change
when the event occurs [7]. Different from the ε-statistic, [7]
utilizes the nearest neighbor statistic to evaluate the difference
between two sets. Given the normal subsequence set SN and
the abnormal subsequence set SA, the first thing we need to
do is to construct ST = SA ∪ SN . For St in set ST , We use
NNr(St,ST ) to represent the rth nearest neighbor of St in
the set {ST \St}. Then we calculate

Ir(St,SA,SN ) =

{
1, ifSt ∈ SiandNNr(St,ST ) ∈ Si
0, otherwise

(7)
The indicative function just shows if the nearest neighbor of
St and St itself are in the same subset. Then we can construct
the following statistic

Tr,p =
1

pr

p∑
i=1

r∑
j=1

Ij(St,SA,SN ) (8)
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Fig. 7: Ranking of root-cause metric in different failure cases.

TABLE I: Comparison of average ranking of root-cause metric
between different methods.

Methods Average Ranking of Root-Cause Metric
Our Approach 14.375
ε-Diagnosis 93.9375
Regression 86
Event-series 74.1875

where p = |SA| + |SN |. From the formula of Tr,p we
could know that the larger the statistic Tr,p is, the more
Ir(St,SA,SN ) are equal to 1, which means the two sets are
more heterogeneous based on the distance measurement we
choose. [28] shows more details from a mathematical point
of view. Many distance measurements could be utilized to
calculate NNr(St,ST ). In our experiments, we choose the
Euclidean distance because of its lower computing cost.

2) Results: We evaluate the effectiveness of root-cause
metric localization of our approach and three baseline methods
on 16 failure cases. Fig. 7 presents the ranking of the root-
cause metric in these 16 failure cases. Intuitively, we can
observe that the root-cause metric ranks at or near the top
using our approach in most cases. However, the three baseline
methods fail to locate the root-cause metric in the top ranking
list, which means that engineers need to spend much time in
finding the true root cause. In order to present the effectiveness
of our approach from a global view, we calculate the average
ranking of the root-cause metric on different cases and the
results are shown in Table I. From this table, we can observe
that our approach can locate the root-cause metric on top-15
on average from hundreds of metrics, which performs much
better than baseline methods.

Furthermore, we also investigate the top-k precision in our
evaluation. If the top-k precision is high, it means that engi-
neers can find the root-cause metric in a short time and do not
waste much time on these false negatives. Fig. 8 presents the
top-k precision (k = 5, 10, 30, 50, 100) comparison between
our approach and three baseline methods. We can clearly
observe our approach can achieve the best top-k precision
continuously, which can save much effort for engineers.

In conclusion, by incorporating log anomaly detection to
obtain the abnormal degree of the system, our approach
outperforms three baseline methods and can locate the root-
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Fig. 8: Top-k precision comparison between our approach and
baseline methods.

TABLE II: Effectiveness of data augmentation.

Metric Data Augmentation Without Augmentation
Average Ranking 14.375 19.875

Top-5 0.25 0.13
Top-10 0.56 0.38
Top-30 0.94 0.75
Top-50 0.94 0.94

Top-100 1.00 1.00

cause metric at top-15 on average from hundreds of metrics.

D. Contribution of Each Component

In this RQ, we aim to evaluate the effectiveness of two key
techniques, i.e., data augmentation and correlation analysis in
our approach.

1) Data Augmentation: As introduced in Section III-C1,
to overcome the challenge of data imbalance between normal
time and abnormal time, we conduct data augmentation to
ensure robust correlation analysis. In order to demonstrate
the necessity of adopting data augmentation, Table II presents
the comparison results (average ranking and top-k precision)
between with and without data augmentation. From this table,
we can observe data augmentation is indeed effective and
can significantly improve the performance. Specifically, data
augmentation can improve the average ranking from 19.875
to 14.375 and increase the top-k (k = 5, 10, 30) precision by
about 0.2.

Furthermore, we also investigate the influence of different
parameters in data augmentation on localization performance.
There are two parameters which are crucial to data augmen-
tation, oversampling ratio and noise intensity. First, about
oversampling ration, as introduced in Section III-C1, we
expand the length of abnormal time to oversample abnormal
data and the value of α denotes the oversampling ration.
Fig. 9(a) shows the average ranking and top-k precision under
different oversampling ratios (α = 0.1, 0.3, 0.5, 0.7, 0.9). We
can observe that our approach achieves the best performance
when oversampling ration is equal to 0.3. Then about the
noise intensity, Fig. 9(b) shows the average ranking and top-k
precision under different noise intensities (i.e., the variance
of Gaussian distribution). It is obvious that our approach
performs best when the variance is equal to 0.1. Intuitively,
if the noise intensity is too small, it has no obvious effect.
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(b) Comparison between different noise intensities

Fig. 9: Influences of different data augmentation parameters
on performance.

TABLE III: Effectiveness of correlation analysis.

Metric MI MIC Pearson
Average Ranking 14.375 29.813 20.563

Top-5 0.38 0.19 0.19
Top-10 0.50 0.44 0.44
Top-30 0.75 0.69 0.88
Top-50 1.00 0.69 0.88
Top-100 1.00 0.94 1.00

However, with too large intensity, the raw information of the
data will be destroyed, which also leads to unsatisfactory
results.

In conclusion, data augmentation adopted in our approach
is simple but indeed effective.

2) Correlation Analysis: Correlation analysis between log
anomaly score and each metric is also a key component in
our approach. In Section III-C2, we have mentioned there are
many correlation analysis methods in the literature and we
choose to adopt Mutual Information (MI) in our approach.
In order to demonstrate the effectiveness of MI, we compare
MI with another two popular correlation analysis methods,
i.e., Maximal Information Coefficient (MIC) and Pearson
Coefficient. The compared average ranking and top-k precision
are shown in Table III. Obviously, Mutual Information indeed
can achieve the best performance compared with the other two
correlation analysis alternatives. In conclusion, the correlation
analysis method adopted in our approach is indeed effective.

E. Time Efficiency

In addition to the ranking precision, efficiency is another
important evaluation metric we need to consider. It is because
when a failure happens in practice, it is vital to locate the root
cause as soon as possible, so that engineers can take immediate
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Fig. 10: Time efficiency comparison between our approach
and baseline methods.

actions to mitigate the failure and reduce the MTTR (mean
time to repair). The running time comparison between our
approach and three baselines is demonstrated in Fig. 10.

Obviously, our approach can achieve a short running time
to localize the root-cause metric (about 1.8 seconds). Actually,
log anomaly detection will cost much time. However, the
DeepLog model can be trained offline with historical data and
anomaly detection can continuously run with online incoming
log data, so that we can obtain the anomaly score directly,
which can save much time for root-cause metric localization.
In terms of the baselines, both ε−Diagnosis and regression-
based analysis require less than 0.05s on average, but their
localization accuracy are far from satisfying. In terms of cor-
relating events with time series, it requires hundreds of seconds
to localize the root-cause metric. It means that engineers need
to wait a few minutes to get a not very accurate result, which
will result in unavailability in real world. As a result, take
both accuracy and efficiency into consideration, our approach
is the best choice for root-cause metric localization.

V. RELATED WORK

A. Root-cause Metric Localization

A great deal of efforts have been devoted into root-cause
metric localization. These methods can be divided into two
categories, metric-event correlation and metric-metric correla-
tion. About metric-event correlation, the majority of methods
utilize hypothesis test. [7] adopts nearest neighbor statistic
to test if there was any change in metrics after an event
had occurred. [5] makes use of ε-statistics to measure the
difference. [6] transfers the event sequence into another time
sequence, and uses the regression model to evaluate causalities
between them. These approaches just regard the failure as
a single event, instead of mining the detailed information
about the abnormal degrees from system logs in depth, which
restricts their performance as we discussed before.

In terms of metric-metric correlation based methods, time
lag between two metrics has been widely used for root-cause
metric localization [2]. It is based on a key observation that
root-cause metric is always behave abnormally earlier than
other influenced metrics. However, in practice, the metrics are
usually collected at every minute or even longer (e.g., five
minutes), but failure propagates very quickly. Therefore, it
is unrealistic to identify root-cause metric based on time lag
between two metrics.
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B. Log Anomaly Detection

In our approach, we leverage the technique of log anomaly
detection to obtain the abnormal degree of the microservice
system, so as to achieve a better performance of root-cause
metric localization. In the literature, much efforts have been
dedicated in log anomaly detection, for example, PCA-based
method [20], clustering-based method [29], Invariant Min-
ing [21]. However, DeepLog based on deep learning has shown
better performance compared with other traditional methods.
Therefore, considering the trade-off between the detection
accuracy and the computing cost, we adopt DeepLog to obtain
the anomaly score of the system.

VI. CONCLUSION

Root-cause metric localization is a challenging task due to
the numerous metrics and complicated dependencies in prac-
tice. In this paper, we propose a novel and robust root-cause
metric localization approach by incorporating log anomaly de-
tection. Our approach consists of two parts, collecting anomaly
scores by the state-of-the-art log anomaly detection algo-
rithm and identifying root-cause metric by robust correlation
analysis with data augmentation. Extensive experiments on
a benchmark microservice system demonstrate our approach
can localize the root-cause metric accurately compared with
existing baseline methods and achieve a short response time.
Therefore, our approach can assist engineers in saving much
time and effort to diagnose and mitigate failures as soon as
possible.
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