
Efficient Compiler Autotuning via Bayesian
Optimization

Junjie Chen†
College of Intelligence and Computing

Tianjin University
Tianjin, China

junjiechen@tju.edu.cn

Ningxin Xu
College of Intelligence and Computing

Tianjin University
Tianjin, China

xnxdw@tju.edu.cn

Peiqi Chen
College of Intelligence and Computing

Tianjin University
Tianjin, China

chenpeiqi@tju.edu.cn

Hongyu Zhang
The University of Newcastle
Callaghan, NSW, Australia

hongyu.zhang@newcastle.edu.au

Abstract—A typical compiler such as GCC supports hundreds
of optimizations controlled by compilation flags for improving the
runtime performance of the compiled program. Due to the large
number of compilation flags and the exponential number of flag
combinations, it is impossible for compiler users to manually
tune these optimization flags in order to achieve the required
runtime performance of the compiled programs. Over the years,
many compiler autotuning approaches have been proposed to
automatically tune optimization flags, but they still suffer from
the efficiency problem due to the huge search space. In this paper,
we propose the first Bayesian optimization based approach,
called BOCA, for efficient compiler autotuning. In BOCA, we
leverage a tree-based model for approximating the objective
function in order to make Bayesian optimization scalable to
a large number of optimization flags. Moreover, we design a
novel searching strategy to improve the efficiency of Bayesian
optimization by incorporating the impact of each optimization
flag measured by the tree-based model and a decay function
to strike a balance between exploitation and exploration. We
conduct extensive experiments to investigate the effectiveness of
BOCA on two most popular C compilers (i.e., GCC and LLVM)
and two widely-used C benchmarks (i.e., cBench and PolyBench).
The results show that BOCA significantly outperforms the
state-of-the-art compiler autotuning approaches and Bayesion
optimization methods in terms of the time spent on achieving
specified speedups, demonstrating the effectiveness of BOCA.

Index Terms—Compiler Autotuning, Bayesian Optimization,
Compiler Optimization, Configuration

I. INTRODUCTION

Compilers (e.g., GCC [1] and LLVM [2]) are respon-
sible for transforming a source program written in a cer-
tain programming language (e.g., C and C++) into an ex-
ecutable program [3]. To improve the runtime performance
of compiled programs [4], a compiler supports a lot of code
optimizations, each of which can be enabled or disabled
by a compilation flag. For example, GCC has hundreds of
compilation flags to support optimizations. One flag example

†Junjie Chen is the corresponding author.

is -finline-small-functions, which can enable the
optimization that integrates functions into their callers when
their bodies are smaller than the expected function call code.
However, since the effect of compiler optimizations depends
on the program characteristics (e.g., program structures), the
same optimizations do not always lead to the same im-
provement in runtime performance when they are applied to
different programs [5]. Moreover, due to the large number of
optimization flags, there are an exponential number of com-
binations of flags. It is challenging for users to understand all
the flags and their combinations and properly determine which
flags should be enabled or disabled in order for the compiled
programs to achieve the required runtime performance [6].

To ease usage of compiler optimizations, compiler devel-
opers pre-define several optimization levels (e.g., -O1, -O2,
-O3 in GCC and LLVM), each of which enables a fixed set of
optimization flags and aims to achieve a certain optimization
goal in general. That is, users can specify an optimization
level to impose a default set of optimization flags for the
compiler. However, due to the large differences of program
characteristics, there is no optimization level that can guaran-
tee to achieve the required runtime performance (measured in
terms of the execution time of the compiled program) for every
program. Therefore, it is necessary for each specific program
to carefully tune the optimization flags in order to achieve
required runtime performance, instead of directly using the
pre-defined optimization levels. This is especially essential for
the applications that are sensitive to runtime performance.

In the literature, many compiler autotuning approaches have
been proposed to automatically tune optimization flags in order
to achieve required runtime performance for a given pro-
gram [6]–[9]. In general, they iteratively test various settings
of optimization flags (we call an optimization flag setting an
optimization sequence following the existing work [6]) with
certain search strategies (e.g., random search [5] or genetic
algorithm [10]) and then output the best one when reaching the

terminating condition. Although these approaches have been
demonstrated to be effective to some degree, they still suffer
from the efficiency problem [5], [10], [11]. More specifically,
with tens to hundreds of compiler optimization flags provided
by a compiler, the number of flag combinations is exponential,
leading to a very huge search space. Therefore, the existing
approaches have to compile and execute programs with a
large number of optimization sequences during the search pro-
cess, which incurs large cost especially when the compilation
and execution are lengthy. As an example, for the program
consumer_jpeg_c with GCC used in our study (presented
in Section IV), the state-of-the-art approach Irace [11] cannot
achieve the required runtime performance within the given
time period (i.e., 3.5 hours). Therefore, it is very important
to improve the efficiency of compiler autotuning.

To solve the problem, in this paper we propose the
first Bayesian Optimization based approach for Compiler
Autotuning, called BOCA. Bayesian optimization is recog-
nized as an effective method to optimize an expensive-to-
evaluate objective function [12]. It uses the accumulated
knowledge in the known area of the search space to guide
samplings in the remaining area in an iterative process so
as to find the optimal sample efficiently. Over the years,
Bayesian optimization has been applied to a wide range of
applications such as hyperparameter optimization in deep
learning [13]. However, it is hard for traditional Bayesian
optimization methods to scale to high-dimensional data due
to their inherent mechanisms (e.g., relying on Gaussian Pro-
cess [14] to approximate the objective function) [15]. Thus,
they are inefficient for compiler autotuning, where a large
number of optimization flags need to be tuned. Some advanced
Bayesian optimization methods have been proposed to handle
high-dimensional data [16], [17]. However, since they are
not designed for compiler autotuning, they do not take the
characteristics of compiler autotuning into consideration (e.g.,
only a small number of optimization flags, referred to as
impactful optimizations, can have noticeable impact on the
runtime performance of a specific program). As a result,
the direct application of the existing Bayesian optimization
methods in compiler autotuning is not efficient (which will be
demonstrated in our study presented in Section V-B).

In this paper, we carefully design BOCA to improve the
efficiency of compiler autotuning. To make BOCA scalable to
a large number of optimization flags, we incorporate Random
Forest (a tree-based ensemble learning algorithm) [18] to build
a probabilistic model to approximate the objective function
based on the already evaluated samples. Then, BOCA uses
the model to predict the quality of unevaluated optimization
sequences for the next sampling. Due to the sheer size of
optimization sequences, it is very costly to predict all of them
in each iteration. Therefore, we design a selection strategy
in BOCA to select only a subset of candidate optimization
sequences so that an optimization sequence that can achieve
required runtime performance can be efficiently found by
just predicting the subset. In particular, our selection strategy
balances between exploitation and exploration:

• Exploitation: By taking the advantage of flag importance
measured based on the tree-based model, BOCA identifies
the impactful optimizations and then fully enumerates their
combinations;

• Exploration: BOCA explores a number of settings of the re-
maining optimizations (called less-impactful optimizations)
with a decay function, which is helpful to avoid local opti-
mum (by exploring less-impactful optimizations) and further
improve the efficiency (by utilizing a decay function).
We conducted extensive experiments to evaluate the ef-

fectiveness of BOCA on two most widely-used C compilers
(i.e., GCC [1] and LLVM [2]) [19]–[22] and on two pub-
lic C benchmarks (i.e., cBench [23] and PolyBench [24])
widely used in the existing compiler autotuning work [25]–
[28]. Our experimental results demonstrate that BOCA does
spend less time to achieve the required runtime performance
and significantly outperforms the existing compiler autotuning
approaches (i.e., one baseline RIO [5] and two state-of-the-art
approaches GA [10] and Irace [11]). The average improvement
(in terms of the time spent on achieving the required run-
time performance) is 42.30%∼78.04%. Besides, we compared
BOCA with the existing Bayesian optimization methods (i.e.,
one traditional method ε-PAL [29] and two advanced methods
FLASH [30] and TPE [16]). The results show that BOCA
significantly outperforms all of them, confirming the neces-
sity of designing a novel Bayesian optimization method for
compiler autotuning. Furthermore, our evaluation confirms the
effectiveness of the selection strategy and the decay function
used in BOCA.

Our work makes the following major contributions:
• We propose BOCA, the first Bayesian optimization based

approach for compiler autotuning, which significantly im-
proves the efficiency of compiler autotuning.

• We design a novel selection strategy in BOCA to select
a subset of candidate optimization sequences by exploiting
impactful optimizations with a tree-based model and explor-
ing less-impactful optimizations with a decay function.

• We conducted extensive experiments on two widely-used
C compilers (i.e., GCC and LLVM) and two widely-used
C benchmarks (i.e., cBench and PolyBench). The results
demonstrate the effectiveness of BOCA.

II. BACKGROUND AND RELATED WORK

A. Compiler Autotuning

In the literature, a large amount of research work focuses on
compiler autotuning [6]–[9]. Here, we briefly introduce some
typical and state-of-the-art approaches, which are also used
for comparison in our study (presented in Section IV).
• Random Iterative Optimization (RIO) [5]: In each iter-

ation, it randomly sets each optimization flag (enabled/dis-
abled), and then evaluates the performance of the compiled
program under the optimization sequence. This process is
repeated until the terminating condition is reached. RIO has
been demonstrated to be effective and is regarded as the
baseline in our study.

• Genetic Algorithm based Iterative Optimization
(GA) [10]: GA first constructs an initial set of chromosomes,
each of which is a random setting of optimization flags.
In each iteration, new chromosomes are produced via
crossover and mutation operations where the former
exchanges the settings of some optimization flags in
two chromosomes to produce new chromosomes and
the latter randomly flips the setting of an optimization
flag in a chromosome to produce a new one. Next, new
chromosomes are evaluated and the set of chromosomes
are updated based on the evaluation results. This process is
repeated until the terminating condition is reached. GA is
a state-of-the-art approach.

• Irace-based Iterative Optimization (Irace) [11]: Irace
learns the sampling distribution for each optimization flag,
which is used to set each optimization flag, during the
iterative process. It first constructs a set of random settings
of optimization flags as the initial set, and learns the
initial sampling distribution for each optimization flag. In
each iteration, it produces new settings of optimization
flags according to the learned sampling distributions, and
then new optimization flag settings are evaluated and the
sampling distribution for each optimization flag is updated
accordingly. This process is repeated until the terminating
condition is reached. Irace is also a state-of-the-art approach.
Besides, there are some supervised approaches based on of-

fline learning for compiler autotuning [6], [7]. Here, we did not
compare with them since their effectiveness heavily depends
on the quality of training data used for offline learning and
collecting a large amount of training data (an instance includes
a program, a setting of optimization flags, and the achieved
performance of the compiled program under the setting) is
very costly in practice. Although the above-introduced search-
based approaches have been demonstrated to be effective and
do not rely on a large amount of training data, they still
suffer from the efficiency issue as presented in Section I.
Therefore, improving the efficiency of compiler autotuning is
very important. That is, it is necessary to propose a novel
approach that can spend less time to find an optimization
sequence that can achieve required runtime performance.

B. Bayesian Optimization

In this paper, we incorporate Bayesian optimization to
improve the efficiency of compiler autotuning. Bayesian opti-
mization is a method to optimize an objective function f(.),
which is expensive to evaluate [12]. Its core idea is to use the
accumulated knowledge in the known area of the search space
to guide samplings in the remaining area in order to find the
optimal sample more efficiently. It is an on-the-fly iterative
process consisting of two main steps: 1) building a surrogate
model for approximating the objective function based on
already measured samples, and 2) guiding the further sampling
based on the surrogate model and an acquisition function.
In traditional Bayesian optimization, Gaussian Process (GP)
is used to build the surrogate model [14]. An acquisition
function is used to decide where to sample next so that an

improvement over the current best observation is likely to
be achieved. The widely-used acquisition functions include
Expected Improvement, Maximum Variance, and Maximum
Mean [30], [31]. According to the acquisition function, the
sample with the best value will be selected and measured.
Then, the sample with its measured observation will be used to
update the surrogate model for the next iteration. For example,
ε-PAL [29] is recognized as a typical Bayesian optimization
method, which uses Maximum Variance as the acquisition
function. However, traditional Bayesian Optimization methods
cannot scale to high-dimensional data (e.g., the large number
of optimization flags) [30], and thus they have not been applied
to the area of compiler autotuning before.

In a similar area, i.e., configurable software systems, a
state-of-the-art approach, called FLASH [30], is based on
Bayesian optimization. To overcome the shortcoming of GP,
FLASH replaces GP with CART (Classification and Regres-
sion Trees) [32], and uses Maximum Mean as the acquisition
function since CART outputs only one value. FLASH can
handle more high-dimensional data, but it is still costly even
unaffordable for compiler autotuning. This is because the
number of flags is large (e.g., the number of tuned flags
for GCC in our study is 71), leading to an extremely large
number of flag combinations, and FLASH has to enumerate
and predict all unevaluated optimization sequences in each
iteration. Furthermore, compilers are also highly configurable
systems. In the area of configuring software systems, many
approaches have been proposed to predict performance of
a configurable software system by training a model using a
sample of configurations [33]–[39]. Different from them, our
work aims to find an optimization sequence, under which the
compiled program can achieve required runtime performance.

In this paper, we design a novel Bayesian optimization based
approach for efficient compiler autotuning, which addresses the
limitations of existing Bayesian optimization methods.

III. APPROACH

A. Problem Definition

We denote the set of optimization flags supported by a
compiler as O = {o1, o2, . . . , om}, where m is the size of
the optimization set and oi can be set to 0 or 1 (0/1 refers
to disabling/enabling it). A specific setting of optimization
flags is called an optimization sequence [6]. All the possible
optimization sequences form the whole optimization space,
which is denoted as S. Since the setting of each flag has two
optional values (i.e., 0 and 1) and the number of optimization
flags is m, the size of the optimization space is |S| = 2m.
In this paper, we aim to improve the efficiency of compiler
autotuning, i.e., spending less time to find an optimization se-
quence in S that can achieve the required runtime performance
for a given program. We call such an optimization sequence
desired optimization sequence.

B. Approach Overview

Due to the huge optimization space and large evaluation
cost, it is challenging to efficiently find a desired optimiza-

less impactful
optimizations

…

impactful
optimizations +

decay
exploration

…

candidate
optimization
sequences

…,

, ,

++++

Training sets
surrogate
model

predict output
best
optimization
sequence

desired
optimization
sequence

Iteration

add to

build

select based on
acquisition function

identify

(a) Overview of BOCA

offset

decay

C1

N
u
m

b
er

 o
f

co
m

b
in

at
io

ns

scale

1 Iterations

(b) Normal decay process of BOCA

Fig. 1: An illustration of BOCA

tion sequence. In this paper, we propose the first Bayesian
Optimization based approach for Compiler Autotuning, named
BOCA, since Bayesian optimization is well recognized as an
efficient method to optimize an expensive-to-evaluate objective
function [12]. However, as presented in Section II-B, due to
the high-dimensional data (i.e., the large number of optimiza-
tion flags) in compiler autotuning, both traditional Bayesian
optimization (e.g., ε-PAL) and the state-of-the-art Bayesian
optimization (e.g., FLASH) methods used for configuring
software systems are not affordable. Thus, we carefully design
the search process in our approach by incorporating Random
Forest (RF) [18] and proposing a novel selection strategy
for candidate optimization sequences in order to overcome
the thorny efficiency issue. The selection strategy aims to
select a subset of candidate optimization sequences, which
is very likely to include a desired one, so that a desired
optimization sequence can be found more efficiently by just
predicting the subset instead of predicting all unevaluated
optimization sequences. In particular, RF is a state-of-the-art
machine learning algorithm, which is able to effectively learn
the interactions and dependencies between optimization flags.

Figure 1a shows the overview of BOCA. In each iteration,
BOCA first learns a surrogate model via Random Forest
based on the training set. It then selects a set of candidate
optimization sequences to be predicted by the surrogate model.
Finally, it selects the best optimization sequence among these
candidates according to a acquisition function, which will be
evaluated and then used to update the surrogate model. In the
following, we introduce our surrogate model and acquisition
function in Section III-C, and present the selection strategy
for candidate optimization sequences in Section III-D and the
overall algorithm of BOCA in Section III-E.

C. Building a Surrogate Model

There are two requirements for building a surrogate model:
a training set and a model-building algorithm. In BOCA, a
training instance is an optimization sequence and the execution
time of a given program after compilation under the optimiza-
tion sequence. That is, the vector of an optimization sequence
is the feature vector of the training instance, and the execution
time is its label. There are two sources of training instances.
Initially, BOCA randomly selects n optimization sequences
and evaluates them to get the corresponding execution time,

which are used as the initial training set. In each subsequent
iteration, BOCA selects the best optimization sequence from
the remaining area of optimization space according to the ac-
quisition function. It then adds the best one and the associated
program execution time to the training set.

Based on a training set, BOCA adopts Random Forest
(RF) to build a surrogate model, instead of GP in traditional
Bayesian optimization. RF is an ensemble machine learning
technique that merges multiple decision trees together to get a
more accurate and stable prediction, where each decision tree
is built based on a subset of training data randomly sampled
from the training set and a subset of features randomly
sampled from the whole feature set [18]. The reasons why
we replace GP with RF are twofold. First, GP cannot scale to
high dimensional data [40]. In particular, it has been found
that recent work using GP-based Bayesian optimization in
the SE community is limited to around 10 dimensional data
(i.e., 10 configuration options) [30], [41], which is much
smaller than the number of optimization flags. However, RF
performs well for high-dimensional data [42], [43]. Second,
GP is very sensitive to its parameters [30], but RF performs
stably because of its ensemble strategy. In particular, through
such a state-of-the-art machine learning algorithm, it can more
effectively learn the interactions and dependencies between
optimization flags to guarantee the effectiveness of BOCA.
Acquisition Function. BOCA uses Expected Improvement
(EI) [31] as the acquisition function since it considers both ex-
ploration (measured by the standard deviation of a prediction)
and exploitation (measured by the mean of a prediction) when
determining the next optimization sequence to be measured. In
GP, the mean and the standard deviation of a prediction can be
directly outputted. BOCA uses RF to merge multiple decision
trees, and thus it acquires the mean and the standard deviation
of a prediction based on the prediction of each decision tree.
More specifically, given a candidate optimization sequence,
each decision tree makes a prediction for it and then BOCA
calculates the mean and the standard deviation based on all
these predictions made by decision trees.

D. Selecting Candidate Optimization Sequences

Based on the knowledge learnt from the optimization se-
quences that have already been measured, BOCA searches
for an desired optimization sequence in the remaining space.

Due to the huge optimization space, it is extremely costly
to predict all the remaining optimization sequences using
the surrogate model in order to find a desired optimization
sequence. Therefore, to reduce the cost, BOCA selects a subset
of candidate optimization sequences that is very likely to
include a desired one, so that the desired one can be efficiently
found by just predicting this subset. However, selecting such a
subset of candidate optimization sequences is also challenging
since the optimization space is extremely huge.

To address this challenge, we carefully design a selection
strategy. The key insight is that for a given program, only a
small number of optimizations can have a large influence on
its execution time (called impactful optimizations). Thus, suf-
ficiently exploiting the impactful optimizations is more likely
to find a desired solution. However, precisely identifying those
impactful optimizations is difficult. To reduce the influence of
noise, it is also necessary to explore other optimizations (called
less-impactful optimizations) and the degree of exploration
should be decayed with the precision of identifying impactful
optimizations improving, so as to avoid incurring overmuch
cost. By considering both exploitation and exploration for
the optimization space, BOCA selects a subset of candidate
optimization sequences that is very likely to include a desired
one. In the following, we present the processes of impactful
optimization identification (Section III-D1) and less-impactful
optimization exploration with decay (Section III-D2) in detail.

1) Impactful Optimization Identification.: BOCA adopts
Gini importance [44] to measure the impact of optimizations
since BOCA depends on multiple decision trees and Gini
importance is often used by tree-based machine learning
techniques to conduct feature selection. In a decision tree, each
node has Gini importance that measures the total decrease
of Gini impurity in the node after splitting using a feature
(referring to an optimization flag in our work). Here, Gini
impurity in a node is a measure of the likelihood of a randomly
chosen optimization sequence from the set of optimization
sequences in the node would be incorrectly labeled if it is
randomly labeled according to the label distribution of the
set in the node. Please note that in our problem, each feature
actually has two optional values, i.e., 0 and 1, and thus a
feature can be used for splitting at most one node in a decision
tree. Therefore, Gini importance of a node is equal to Gini
importance of the feature used for splitting on this node in
a decision tree. More specifically, the calculation of Gini
importance for a node d is shown in Formula 1.

G(d) = [I(d)− ωleft ∗ I(left)− ωright ∗ I(right)] ∗ nd

N
(1)

where I(.) is Gini impurity of a node, ωleft/ωright refers to the
proportion of optimization sequences reaching the left/right
node from a node d, nd is the number of optimization se-
quences in the node, and N is the total number of optimization
sequences in the whole training set. Further, the calculation of
Gini impurity for a node d is shown in Formula 2.

I(d) = 1−
c∑

i=1

p2i (2)

where c is the number of classes in the set and pi is the
probability of picking an optimization sequence with class
i from the set. Please note that, although BOCA aims to
construct a regression model through RF, each decision tree
actually splits the whole range into several intervals as classes
during training, enabling the calculation of Gini impurity.

After acquiring Gini importance of each optimization flag
in each decision tree (if the feature is used for splitting in the
tree), BOCA further calculates the impact of each optimization
flag by merging all these decision trees, as shown in Formula 3.
In this formula, u is the number of decision trees that use o
for splitting on a node, t is the total number of decision trees,
and di is the node using o for splitting in the ith decision tree.

Impact(o) =

∑u
i=1 G(di)

t
(3)

By prioritizing optimization flags in the descending order
of their impact, BOCA identifies top-K optimizations as
impactful optimizations. Since impactful optimizations could
have large influence on the execution time of the given
program, BOCA conducts extensive exploitation of them. That
is, BOCA exploits all the combinations of these impactful
optimizations. Here, to avoid incurring large costs, K should
be small. We discuss the setting of K in our study (Section
IV-C) and the impact of K on the results in Section VI-A.

2) Less-impactful Optimization Exploration with Decay:
Besides setting these impactful optimizations, a complete
optimization sequence also needs to set the remaining op-
timizations (less-impactful optimizations). Intuitively, for a
fixed setting of impactful optimizations, it is acceptable to
randomly set the remaining optimizations to form a complete
optimization sequence since the remaining optimizations have
a slight influence on the execution time of the compiled
program. However, it is difficult to precisely determine the
impact of each optimization using any machine learning
technique, especially when the training set is not large at
the first few iterations. That is, the remaining optimizations
may also contain really impactful optimizations. To reduce the
influence of noise, BOCA further explores many combinations
of the less-impactful optimizations for a fixed setting of
impactful optimizations. Since it is impossible to explore all
the combinations, BOCA randomly selects a certain number
of combinations to explore. Another benefit of the random
exploration is to avoid local optima. To further reduce the
costs incurred by exploration, BOCA gradually decays the
degree of exploration (i.e., the number of randomly selected
combinations of less-impactful optimizations) when the size
of the training set is increasing. This is because as the size
of the training set increases, the identification of impactful
optimizations could become more precise, and thus it is not
necessary to extensively explore the remaining optimizations.

BOCA uses a exploration decay function to determine the
number of explored combinations of less-impactful optimiza-
tions for each fixed setting of impactful optimizations at each
iteration. Since in the first few iterations the training-set size is
relatively small, it is more likely to have much noise, and thus
the decay could be slow in the beginning. Subsequently, the

training-set size becomes larger and larger, the noise could be
reduced, and thus the decay could be fast. With this intuition,
BOCA uses a normal decay function as shown in Formula 4.

C(i) = C1 ∗ exp
(
−
max(0, i− offset)2

2σ2

)
, σ2 = −

scale2

2 log(decay)
(4)

where C1 is the initial number of explored combinations
of less-impactful optimizations for each setting of impactful
optimizations, i is the iteration (i ≥ 2), C(i) is the number
of explored combinations of less-impactful optimizations at
the ith iteration, and offset, scale, and decay control the decay
shape of Gaussian decay function. Figure 1b depicts the decay
process of BOCA and the meanings of offset, scale, and decay.

Based on the calculated number of explored combinations,
BOCA randomly forms C(i) combinations of less-impactful
optimizations for each setting of impactful optimizations, thus
the total number of selected candidate optimization sequences
is C(i) ∗ 2K at the ith iteration. By calculating the EI values
of these candidate optimization sequences via the surrogate
model, BOCA selects the optimization sequence with the best
EI value as the optimal one among the set, then measures
the execution time of the given program after being compiled
under it, and adds it to the training set for the next iteration.

E. Overall Algorithm of BOCA

We formally present BOCA in Algorithm 1. For a given
program to be compiled, Algorithm 1 outputs a desired
optimization sequence sbest that makes the program achieve
shorter execution time after being compiled under sbest, and
also the corresponding execution time f (sbest). We use f(s) to
represent the execution time of a program after being compiled
under an optimization sequence s. Lines 1-7 construct the
initial training set (denoted as train) by randomly generating
sizeinitial optimization sequences and measuring their execution
time. Lines 8-31 conduct the iteration process of BOCA. Line
9 builds a surrogate model via RF based on the training set.
Lines 10-14 acquire K impactful optimizations by calculating
the impact of each optimization and also treat the remaining
optimizations as less-impactful optimizations. Line 15 enumer-
ates all the settings of impactful optimizations. Besides setting
impactful optimizations, a complete optimization sequence
also requires a setting of less-impactful optimizations. Then,
Lines 16-21 randomly explore C non-repetitive settings of
less-impactful optimizations for each setting of impactful op-
timizations, where C is calculated based on the normal decay
function. In this way, a set of candidate optimization sequences
(denoted as allCandidates) are obtained by considering both
exploitation and exploration. Lines 22-25 use the surrogate
model to predict each candidate optimization sequence so as
to obtain the mean and standard deviation of each prediction,
which are used to calculate the EI value of each candidate.
Lines 26-27 obtain the optimization sequence that has the
largest EI value among all the candidates and is not in the
training set, measure this optimization sequence, and then
add it and its execution time to the training set for the next
iteration. Lines 28-30 obtain the currently optimal optimization

Algorithm 1: Pseudo-code of BOCA
Input : O: a list of optimizations [oi | i ∈ 1. . . m]

K: the number of impactful optimizations
sizeinitial: the size of the initial training set

Output: (sbest, f(sbest)): (a desired optimization sequence, the execution time
of the given program after compilation under sbest)

1 train ← []/* training set to build a surrogate model */
2 foreach i from 1 to sizeinitial do
3 foreach j from 1 to m do
4 s[j] ← random(0, 1)/* randomly set 0 or 1 for oj in

an optimization sequence s */
5 end
6 train.add(s, f(s))
7 end
8 foreach i from 1 to iterations do
9 model ← RandomForest(train)

10 foreach j from 1 to m do
11 importance[j] ← getImportance(oj , model)/* get the

impact of oj */
12 end
13 importantOpts ← getImportantOpts(importance, O, K)/* get

top-K impactful optimizations */
14 unimportantOpts ← set(O) – importantOpts
15 importantSettings ← getAllSettings(importantOpts)/* get all the

settings of impactful optimizations */
16 allCandidates ← []
17 foreach j from 1 to size(importantSettings) do
18 C ← normalDecay(i)/* get the number of explored

settings of less-impactful optimizations */
19 unimportantSettings ← getRandomSettings(unimportantOpts, C)

/* randomly get C non-repetitive settings
of less-impactful optimizations */

20 allCandidates.add(importantSettings[j], unimportantSettings)
/* get C candidate optimization sequences
by combining importantSettings[k] and each
in unimportantSettings */

21 end
22 foreach j from 1 to size(allCandidates) do
23 (mean, std) ← model.predict(allCandidates[j])
24 ei[j] ← EI(mean, std)
25 end
26 bestCandidate ← getBestCandidate(allCandidates, ei) /* get the

candidate with largest ei and not in train */
27 train.add(bestCandidate, f (bestCandidate))
28 if f (bestCandidate) < f(sbest) then
29 (sbest, f(sbest)) ← (bestCandidate, f (bestCandidate))
30 end
31 end
32 return (sbest, f(sbest))

sequence among all the measured ones and Line 32 outputs the
finally desired one when the terminating condition is reached.

IV. EVALUATION

In the study, we address the following research questions:
• RQ1: How does BOCA perform compared with existing

compiler autotuning approaches?
• RQ2: Does BOCA outperform the existing Bayesian opti-

mization methods in compiler autotuning?
• RQ3: Is the selection strategy proposed in BOCA effective?

A. Compilers and Programs

We used two most popular open-source C compilers
(GCC [1] and LLVM [2]) [45]–[47] as subjects, and two
widely-used C benchmarks (cBench [23] and PolyBench [24])
as programs following the existing compiler autotuning
work [5], [25]–[28]. Following the prerequisites of the bench-
marks and existing work [5], [48], we used GCC 4.7.7 and
LLVM 2.9 for the x86-64 Linux platform. In our study, we
tuned 71 optimization flags for GCC and 64 optimization

TABLE I: Basic information of subject programs

ID Program #SLOC Description

C1 consumer_jpeg_c 26,950 Image compression and decompression.
C2 security_sha 297 A secure hash algorithm.
C3 automotive_bitcount 954 Testing bit manipulation abilities.
C4 automotive_susan_e 2,129 Image recognition for edges.
C5 automotive_susan_c 2,129 Image recognition for corners.
C6 automotive_susan_s 2,129 Image smoothing.
C7 bzip2e 7,200 File compression and decompression.
C8 consumer_tiff2rgba 22,321 RGB formatted TIFF image conversion.
C9 telecom_adpcm_c 389 Pulse Code Modulation.
C10 office_rsynth 5,412 Text to speech synthesis program

P1 2mm 252 2 Matrix multiplications.
P2 3mm 267 3 Matrix multiplications.
P3 cholesky 212 Cholesky decomposition.
P4 jacobi-2d 200 2-D Jacobi stencil computation.
P5 lu 210 LU decomposition.
P6 correlation 248 Correlation computation.
P7 nussinov 569 DP for sequence alignment.
P8 symm 231 Symmetric matrix-multiply.
P9 heat-3d 211 Heat equation over 3D data domain.
P10 covariance 218 Covariance computation.

flags for LLVM, including both the optimization flags in -O3
(the highest optimization level in both GCC and LLVM [26])
and the optimization flags that have been demonstrated to
have large influences on runtime performance of compiled
programs [5].

Regarding the used benchmarks, we used 20 programs
(including 10 programs from cBench and 10 programs from
PolyBench) in total. Here, we did not use all the programs
from the two benchmarks, since the execution time of the
remaining programs cannot be noticeably affected by compiler
optimizations although tuning, which has been demonstrated
by the existing work [5]. Each program is equipped with
an input set, which can be executed to measure the runtime
performance of the compiled program. Table I shows the basic
information of the used programs in our study, where each
column presents the ID (“C” is cBench and “P” is PolyBench),
the program name, the number of source lines of code (SLOC),
and the brief description about the program, respectively.

The code of BOCA, the experimental data, and the complete
list of optimization flags used in our study are available at the
project webpage: https://github.com/BOCA313/BOCA.

B. Compared Approaches

We considered three categories of compared approaches.
1) Existing Compiler Autotuning Approaches: As presented

in Section II-A, we considered three existing compiler auto-
tuning approaches for comparison, i.e., RIO, GA, and Irace,
where RIO is regarded as the baseline while GA and Irace are
the state-of-the-art approaches for compiler autotuning.

2) Existing Bayesian Optimization Methods: BOCA is the
first Bayesian optimization based approach for compiler au-
totuning, which incorporates a machine learning technique
(RF) and a novel selection strategy for selecting candidate
optimization sequences. In the literature [16], [29], [49], [50],
many Bayesian optimization methods have been proposed,
thus it is interesting to investigate whether or not our proposed
Bayesian optimization based approach BOCA can outperform

the direct application of existing Bayesian optimization meth-
ods for compiler autotuning. Here, we chose the following
Bayesian optimization methods for comparison: a traditional
method (ε-PAL), a state-of-the-art method originally proposed
for configuring software systems (FLASH), and an advanced
general Bayesian optimization method (TPE [16]).
ε-PAL and FLASH have been presented in Section II-B.

Here, we introduce TPE briefly. Different from other Bayesian
optimization methods, the predictive model in TPE does not
predict the posterior probability distribution value for f(x) at
a candidate sample x. Instead, it models both the distribution
of x given f(x) and the distribution of f(x), and then derives
the posterior probability distribution value for f(x) at x when
calculating the acquisition function value of x.

3) Selection Strategy: An important component in BOCA
for improving efficiency is the selection strategy for candidate
optimization sequences, thus it is important to investigate its
contribution to BOCA. An advanced strategy to construct a set
of candidate optimization sequences in Bayesian optimization
is the local search strategy proposed in SMAC [17], which
conducts local search based on nb best optimization sequences
measured by the acquisition function. More specifically, for
each best optimization sequence, it first constructs m op-
timization sequences by flipping one flag setting where m
is the number of optimization flags, and then uses the op-
timization sequence with the best acquisition function value
as a candidate optimization sequence produced from the best
optimization sequence. Also, this strategy randomly constructs
nr candidate optimization settings. That is, the total number of
candidate optimization settings constructed via this strategy is
nb+nr. Therefore, we compared BOCA with the variant that
replaces the selection strategy used in BOCA with the local
search strategy used in SMAC. We call this variant BOCAs.

C. Implementations and Configurations

We implemented BOCA in Python based on scikit-
learn [51] and NumPy [52]. We adopted the implementation
of RF provided in scikit-learn and used its default parameter
settings. By conducting a preliminary study based on a small
dataset, we set K, offset, decay, scale in BOCA to be 8, 20,
0.5, and 10, respectively. We set the initial set size to be
2 following the existing work [30] and the total number of
iterations to be 60. We also investigated the influence of main
parameters on the experimental results (in Section VI-A).

For the compared approaches, we adopted their implemen-
tations released by the corresponding work [10], [16], [29],
[30], [53]. We also adopted the same parameter settings as the
existing work [16], [29], [30], [53], and the same initial set size
as BOCA for fair comparison (except GA). Due to crossover in
GA, we cannot set the initial set size to 2, thus we set it to the
closest value, i.e., 4. In the existing work [10], the initial set
size of GA is set to 100, but it is very costly especially when
the compilation and execution time of a program is large, thus
we did not adopt this setting. To investigate the effectiveness of
GA with a larger initial set size, we also tried another initial
size of 10. We call the two GA implementations GA4 and

C1

C2

C3

C4

C5

C6

C7

C8

C9

C1
0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P1
01.0

1.2

1.4

1.6

1.8

2.0
Sp

ee
du

p

(a) GCC

C1

C2

C3

C4

C5

C6

C7

C8

C9

C1
0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P1
01.0

1.2

1.4

1.6

1.8

(b) LLVM

Fig. 2: speedup of BOCA

GA10, respectively. Following the existing work [17], we set
nb to be 10 and nr to be 10,000 in BOCAs.

To reduce the influence of machine environment, we ran a
program under an optimization sequence 5 times and calcu-
lated the average time. To reduce the influence of randomness,
we ran each approach 5 times and calculated the average
results. Our study is conducted on a workstation with 16-
core Intel(R) Xeon(R) CPU E5-2640 v3, 126G memory, and
CentOS 6.10 operating system.

D. Measurement

Following the existing work [5], [25], we calculated the
speedup of a compiler autotuning approach over -O3 (i.e.,
the highest optimization level of GCC and LLVM with the
performance goal of minimizing execution time of compiled
programs [26]) to measure the effectiveness of an approach.
The speedup is calculated by dividing the execution time of the
program compiled under -O3 by that of the program compiled
under the optimization sequence produced by an approach.
As our work aims to improve the efficiency of compiler
autotuning, we compared these approaches in terms of the
time spent on achieving (i.e., first time to reach or exceed) a
certain speedup. Here, we set the total number of iterations
for BOCA to be 60. We compared them in terms of the time
they spent on achieving the speedup achieved by BOCA at its
30th, 40th, 50th, 60th iterations, respectively. Less is better. If a
compared approach did not achieve a certain speedup within
120 iterations (2 times of the number of iterations of BOCA),
we regarded it as timeout. In Section VI-B, we also discuss
the effectiveness of BOCA with more iterations.

V. RESULTS AND ANALYSIS

A. RQ1: BOCA v.s. Existing Compiler Autotuning Approaches

We first show the speedups of BOCA within 60 iterations
over -O3 on both GCC and LLVM in Figure 2. From
this figure, BOCA indeed improves the runtime performance
of compiled programs compared with the highest vendor-
provided optimization level -O3. The average speedups of
BOCA on GCC and LLVM are 1.25X and 1.13X respectively,
demonstrating the effectiveness of BOCA in compiler autotun-
ing. For example, for the program C5 on GCC, BOCA enables
44 optimization flags and disables the other 27 flags, which
improves the runtime performance of C5 compiled under -O3
by 1.63X. Also, compared with -O3, the average speedup of
BOCA on GCC improves from 1.20X at the 20th iteration to

1.25X at the 60th iteration, and on LLVM it improves from
1.09X at the 20th iteration to 1.13X at the 60th iteration.

As BOCA is designed to improve the efficiency of compiler
autotuning, we extensively compared BOCA with the existing
compiler autotuning approaches (i.e., RIO, GA4, GA10, and
Irace), to investigate how much time they spent in order to
achieve the speedup achieved by BOCA. The results are shown
in Table II, where the values represent the time spent on
achieving the speedup achieved by BOCA at its 30th, 40th,
50th, 60th iterations, respectively. We also calculated the results
at the 20th iteration, which has the same conclusion as those at
other iterations, and due to the space limit we put them at the
project webpage. The cells with the shading refer to the
best result in the corresponding case, and the cells marked
as 7 mean that the compared approach does not achieve
the corresponding speedup within 120 iterations. Note that
the time for completing 120 iterations for all the compared
approaches is significantly longer than that for completing 60
iterations for BOCA. We calculated the average time spent
on completing one iteration for each approach, which is 96,
102, 95, 100, and 136 seconds for BOCA, RIO, GA4, GA10,
and Irace respectively, demonstrating the little cost of BOCA.
Although running these compiler autotuning approaches takes
some time, it is actually acceptable since the given program
can be compiled once under the desired optimization sequence
and then used all the time. From Table II, among 160 cases
(20 programs * 2 compilers * 4 speedup settings), BOCA
performs the best (i.e., requires the shortest time to achieve
the corresponding speedup) among all the compared compiler
autotuning approaches in 81% (129 out of 160) cases. More-
over, these compared approaches are even timeout in at least
45% cases. The results demonstrate that BOCA does largely
improve the efficiency of compiler autotuning.

We further investigated whether BOCA significantly out-
performs all the compared compiler autotuning approaches
by conducting the Wilcoxon Signed-Rank Test [54] for their
time spent on achieving the corresponding speedup at the
significance level 0.05. For the timeout cases, we used the
time spent on completing 120 iterations for statistical analysis
and following calculation. We found that all the p values
are smaller than 0.0004, indicating that BOCA significantly
outperforms all the compared approaches for each speedup
setting. We also calculated the average improvements of
BOCA over the compared approaches in terms of the time
they spent on achieving the speedup that BOCA achieved
at its 30th, 40th, 50th, 60th iterations. The results are shown
in Table III. The average improvements of BOCA over all
the compared compiler autotuning approaches in terms of the
time spent range from 42.30% to 78.04% across all speedup
settings. That further confirms the effectiveness of BOCA.

B. RQ2: BOCA v.s. Existing Bayesian Optimization Methods

To answer RQ2, we compared BOCA with the direct appli-
cation of existing Bayesian optimization methods (i.e., ε-PAL,
FLASH, and TPE) in compiler autotuning. The comparison
results between BOCA and the advanced method TPE are

TABLE II: Comparison among compared approaches in terms of time (seconds)

App. ID GCC LLVM ID GCC LLVM
S30 S40 S50 S60 S30 S40 S50 S60 S30 S40 S50 S60 S30 S40 S50 S60

BOCA

C1

3531 4839 6149 6589 3860 5430 7401 8781

P1

1785 2714 3780 4022 1933 2428 2428 3421
RIO 9095 13136 7 7 9783 11906 11906 15953 6053 7 7 7 9173 7 7 7
GA4 17542 7 7 7 16626 16837 16837 7 3805 7 7 7 7 7 7 7
GA10 8497 12249 12746 12746 10573 12712 12712 13718 7 7 7 7 2437 7 7 7
IRace 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
TPE 13601 7 7 7 14035 15031 16138 18346 1117 4024 4651 7016 1165 4436 4436 4436

BOCA

C2

3363 4235 5753 7072 3279 4264 4912 6336

P2

3081 4278 4912 5987 2453 3506 3506 4939
RIO 5525 6737 8609 10693 9418 11977 11977 7 7 7 7 7 920 7554 7554 13045
GA4 10744 11142 7 7 12020 13232 14174 7 4460 4460 7 7 4150 7 7 7
GA10 6254 6772 7748 8967 9959 11673 12077 7 3025 3025 6661 7 2301 5896 5896 8472
IRace 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
TPE 4603 4774 7066 9410 9488 9881 9931 10501 7 7 7 7 1521 7285 7285 9198

BOCA

C3

1942 2458 2757 3680 1931 2128 2864 4015

P3

4191 5894 7283 7283 5230 6910 7403 7403
RIO 7 7 7 7 7 7 7 7 9921 9921 9921 9921 15400 7 7 7
GA4 7175 7 7 7 7977 7 7 7 7 7 7 7 19891 7 7 7
GA10 4219 7 7 7 6224 6224 6224 6224 7 7 7 7 5946 16894 16894 16894
IRace 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
TPE 6860 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

BOCA

C4

2961 3986 4808 5853 2072 3504 3991 4955

P4

1231 1983 2476 3143 861 1782 2219 2219
RIO 7 7 7 7 7555 10161 10811 10811 7 7 7 7 758 1002 1002 1002
GA4 9313 10012 11117 11117 6798 8008 8108 8108 7 7 7 7 1709 2298 7 7
GA10 7 7 7 7 8181 9574 9574 9574 7 7 7 7 1409 2221 2636 2636
IRace 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
TPE 7 7 7 7 8074 7 7 7 7 7 7 7 471 635 772 772

BOCA

C5

2464 3192 3715 4884 2369 3196 3920 4814

P5

5985 7469 8526 11439 8062 9059 12680 15258
RIO 7029 9355 9355 9693 7747 7 7 7 11944 14293 23375 23375 56660 56660 56660 56660
GA4 8603 9059 9059 9059 7 7 7 7 9740 13697 19294 20096 23278 7 7 7
GA10 5369 7 7 7 6184 7 7 7 16238 7 7 7 40982 7 7 7
IRace 1090 1090 1090 7 7 7 7 7 7 7 7 7 7 7 7 7
TPE 5532 7303 8108 8809 7694 7 7 7 7 7 7 7 20048 7 7 7

BOCA

C6

1994 2585 3286 3816 1924 2554 3291 4009

P6

745 985 1463 1463 963 963 1637 1637
RIO 7070 7 7 7 8404 8404 9420 9420 428 428 428 428 7 7 7 7
GA4 5363 7207 7634 8059 4272 4272 6209 6209 144 144 144 144 7 7 7 7
GA10 4576 7207 7207 7207 5359 5765 6585 6585 336 336 336 336 7 7 7 7
IRace 2903 7 7 7 7 7 7 7 7 7 7 7 672 7 7 7
TPE 5947 7 7 7 9521 9521 7 7 150 150 265 265 7 7 7 7

BOCA

C7

2101 2851 3197 4615 2286 3064 3804 4466

P7

2823 3797 4617 5692 1730 2510 3157 3431
RIO 8939 7 7 7 7024 7579 8114 10128 7 7 7 7 7 7 7 7
GA4 6787 7797 8177 8465 2984 5888 6010 7388 6866 7367 7615 7615 7 7 7 7
GA10 7 7 7 7 3096 6470 7488 8195 6129 7 7 7 7 7 7 7
IRace 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
TPE 7 7 7 7 8375 7 7 7 7 7 7 7 7 7 7 7

BOCA

C8

3557 4484 5882 6977 5017 6425 8189 8824

P8

1550 1831 2163 2163 1064 1064 1064 1064
RIO 12249 14329 7 7 17686 19047 7 7 7 7 7 7 949 949 949 949
GA4 13395 17226 7 7 26282 7 7 7 2246 7 7 7 7 7 7 7
GA10 11679 13164 13577 15017 22713 25011 7 7 7 7 7 7 1329 1329 1329 1329
IRace 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
TPE 9693 10885 12051 12142 17094 7 7 7 4363 7 7 7 659 659 659 659

BOCA

C9

1156 1637 2052 2453 2359 3264 3979 4524

P9

1824 2291 3007 3456 1754 1754 3071 3071
RIO 4712 7 7 7 746 1897 2164 2866 4846 7267 7 7 7 7 7 7
GA4 4047 4704 5385 5696 4728 5827 6364 6454 7 7 7 7 7 7 7 7
GA10 1784 4430 6251 6709 1636 2092 2092 2642 2463 7 7 7 7 7 7 7
IRace 1995 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
TPE 7 7 7 7 6695 6853 6853 6853 7 7 7 7 7 7 7 7

BOCA

C10

1599 2200 2417 2916 1951 2565 2958 3836

P10

1450 1783 2701 3250 1008 1354 1998 2322
RIO 3312 4834 5559 7 6149 6604 6735 6735 7 7 7 7 7 7 7 7
GA4 4966 4966 4966 4966 7 7 7 7 970 970 7 7 7 7 7 7
GA10 1607 1785 2137 2137 6535 6535 6950 6950 7 7 7 7 7 7 7 7
IRace 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
TPE 7 7 7 7 7424 7424 7 7 749 749 2506 3671 3749 3749 4926 4926

shown in Tables II and III (i.e., Row “TPE”). Table II shows
that BOCA outperforms TPE in 88.75% (142 out of 160)
cases. Table III shows that the average improvements of BOCA
over TPE range from 43.01% to 71.06% across all speedup
settings. We also conducted the Wilcoxon Signed-Rank Test
between BOCA and TPE, and the results show that BOCA
statistically significantly outperforms TPE.

Since ε-PAL and FLASH need to enumerate and predict all
the unevaluated optimization sequences in each iteration and

the number of optimization flags is large in our study, both of
them cannot produce the results of compiler autotuning within
acceptable time. As an example, considering the smallest
program P4 with GCC, when tuning only 30 optimization
flags, the time spent on completing the first iteration for both ε-
PAL and FLASH (i.e., more than 13,000 seconds) has already
been larger than the time spent on completing 60 iterations
for BOCA (i.e., 3,143 seconds). Therefore, we cannot directly
compare BOCA with ε-PAL and FLASH based on the whole

TABLE III: Average improvements of BOCA over compared
approaches in terms of time spent on achieving speedups (%)

BOCA GCC LLVM
v.s. S30 S40 S50 S60 S30 S40 S50 S60

RIO 64.17 57.99 53.27 45.22 73.75 70.87 64.42 60.64
GA4 66.37 60.33 56.37 48.36 71.41 69.12 62.48 56.54
GA10 60.88 57.68 50.17 42.30 66.93 69.02 62.32 56.71
Irace 71.06 63.67 55.10 48.65 78.04 71.99 65.06 58.92
TPE 66.60 58.11 50.38 43.01 71.06 68.70 61.75 55.96

S10 S20 S30 S40 S50 S60

25
50
75

tim
e(

10
^2

s)

PAL
FLASH

BOCA

Fig. 3: BOCA vs ε-PAL vs FLASH

S10 S20 S30 S40 S50 S60

20

40

60
tim

e(
10

^2
s)

BOCA BOCAnodecay

Fig. 4: BOCA vs BOCAnodecay

set of flags used in our study. We further tried our best to
enable comparisons by using a small set of optimization flags.
More specifically, we conducted a study by randomly selecting
20 flags for GCC and LLVM respectively and randomly
selecting four programs (i.e., C4, C7, P7, and P8) as the
representatives. The results are shown in Figure 3, where the x-
axis represents the speedups and the y-axis represents the time
spent on achieving the speedups on average across programs
and compilers. We found that even though using a small set of
flags, BOCA still spends less time to achieve each specified
speedup than both ε-PAL and FLASH.

In summary, our results confirm that BOCA indeed per-
forms better than the existing Bayesian optimization methods,
demonstrating the necessity of designing a novel Bayesian
optimization method specific to compiler autotuning. Indeed,
through RF, BOCA can use a relatively small training set to
build an effective model.

C. RQ3: Selection Strategy Effectiveness

We further investigated whether or not our proposed se-
lection strategy is more effective than the existing advanced
selection strategy used in Bayesian optimization by comparing
BOCA and BOCAs. Figure 5 shows the comparison results in
terms of the time spent on achieving the speedup achieved
by BOCA in the 60th iteration. We found that BOCA spends
less time than BOCAs on achieving the speedup on average
for both GCC and LLVM. The average time spent by BOCA
and BOCAs is 4,838 and 8,412 seconds on GCC and 4,966
and 7,864 seconds on LLVM respectively. The average im-
provements of BOCA over BOCAs across all programs are
42.49% and 36.45% on GCC and LLVM respectively. We also
conducted the Wilcoxon Signed-Rank Test and found BOCA
indeed significantly outperforms BOCAs in statistics. The
results demonstrate the effectiveness of our proposed selection
strategy in BOCA. We further analyzed the reason why BOCA
outperforms BOCAs. The latter conducts local search by
flipping only one flag and uses the acquisition function to
select the final candidates while the former carefully mea-
sures the impact of each optimization flag and then exploits

BOCA BOCAs

5
10
15
20
25

ti
m

e(
10

^
3s

)

(a) GCC

BOCA BOCAs

5
10
15
20
25

(b) LLVM

Fig. 5: Comparison between BOCA and BOCAs

4 8(default) 12 160
20
40
60
80

100

tim
e(

10
^2

s)

(a) k-value comparison

5 10(default) 15 200
20
40
60
80

100

tim
e(

10
^2

s)

(b) scale comparison

Fig. 6: Parameter evaluation

the identified impactful optimizations sufficiently. The results
show that different optimization flags contribute differently to
the overall effectiveness of compiler autotuning for a program.

As presented in Section III-D, to further improve the ef-
ficiency of compiler autotuning, we designed an exploration
process with decay. It is also interesting to investigate whether
such a decay process is really helpful to improve the efficiency.
Therefore, we conducted a study to compare BOCA with its
variant without the decay process (denoted as BOCAnodecay)
on the same programs used in Figure 3. The results are shown
in Figure 4. BOCA indeed takes less time to achieve the same
speedup than BOCAnodecay in all the settings, demonstrating
the contribution of the decay process.

VI. DISCUSSION

A. Influence of Main Parameters in BOCA

We discuss the influence of main parameters in BOCA
based on the same programs used in Figure 3. In particular, we
investigated two main parameters in BOCA: K (the number of
identified impactful optimizations) and scale (which controls
the speed of decay) that are described in Section III-D. The
results are shown in Figure 6, where the x-axis represents
the parameter values and the y-axis represents the average
time spent on achieving the speedup BOCA achieves in the
60th iteration across programs and compilers. From Figure 6a,
our default K value, i.e., 8, performs the best. When K is
set to 16, BOCA cannot be completed within the given time
period, since exploiting all the combinations of 16 impactful
optimizations is very costly. The result also demonstrates the
importance of setting a proper K value. From Figure 6b, the
small values (i.e., 5 and 10) of scale perform better than
the large values (i.e., 15 and 20), indicating that relatively
quick decay is helpful to improve the efficiency of compiler
autotuning. Our current value of scale (i.e., 10) performs
slightly better.

S10 S20 S30 S40 S50 S60 S70 S80 S90 S100
S110

S120
0

100

200
tim

e(
10

^2
s)

BOCA
RIO
GA4
GA10
IRace
TPE
timeout

Fig. 7: Comparison with more iterations

B. Effectiveness of BOCA with More Iterations

We investigated the effectiveness of BOCA with more
iterations by completing 120 iterations for BOCA and 240
iterations for the compared approaches. The results on program
P7 on LLVM are shown in Figure 7, where the x-axis repre-
sents the speedups that BOCA achieves at the corresponding
iterations, and the y-axis represents the time spent on achieving
the speedups. From this figure, we can see that BOCA keeps
outperforming all the compared approaches in terms of the
time spent, with the number of iterations increasing. Moreover,
the compared approaches are all timeout at a certain point
(marked by × in Figure 7).

C. Threats to Validity

The threats to validity mainly lie in the compilers and
programs used in our experiments. As presented in Sec-
tion IV-A, to satisfy the prerequisites of the used benchmarks,
we used relatively old versions of GCC and LLVM following
existing work [5], [48]. To reduce the threats, we conducted
an experiment to investigate the effectiveness of BOCA on
a recent GCC version (i.e., GCC 8.3.1) on three different
programs produced by Csmith [55]. Csmith is a state-of-the-
art C program generator, and its produced programs tend to
invoke a large amount of compiler-optimization code, which
facilitates the evaluation of compiler autotuning. The results
show that BOCA achieves 1.04X∼1.06X speedups over -O3
at the 60th iteration on the three programs, while all the
compared approaches achieve at most 1.01X speedup even
at their 120th iterations, demonstrating the effectiveness of
BOCA on a recent compiler and on different programs to some
degree. This speedup is relatively small since the performance
of newer versions has been largely improved, which causes
short execution time of the three small programs under -O3.
Therefore, the improvement room for compiler autotuning
becomes small on them. For larger programs, the improvement
room could be larger. Due to space constraint, we only briefly
describe this experiment here. More detailed results can be
found in our project webpage. In the future, we will use more
compilers and programs to evaluate the effectiveness of BOCA
to further reduce the threats.

Furthermore, in our study, it is infeasible to know the
ground-truth global optimum in an enormous search space. To
further investigate whether BOCA is able to find the global
optimum more efficiently, we found a small LLVM case which
only has 11 flags and was completely searched [30]. We
applied BOCA and the most effective compared approach

TPE to it. BOCA found the global optimal sequence within
31 iterations while TPE cannot find it within 120 iterations,
demonstrating the effectiveness of BOCA in finding the global
optimal sequence to some degree.

VII. CONCLUSION

In this paper, we propose BOCA, the first Bayesian opti-
mization based approach for efficient compiler optimization.
BOCA includes a novel searching strategy for Bayesian opti-
mization, which incorporates the impact of optimization flags
measured by a tree-based model and a decay function. We per-
form extensive experiments on two widely-used C benchmarks
using GCC and LLVM. The results demonstrate that BOCA
significantly outperforms all the compared approaches in terms
of the time spent on achieving specified speedups. Further, for
compiler writers, our work will be useful for developing self-
tuning compilers and improving compiler code associated with
the flags that hamper performance.

ACKNOWLEDGMENT

This work has been supported by the National Natural
Science Foundation of China 62002256 and 61828201.

REFERENCES

[1] “GCC,” Accessed: 2020, https://gcc.gnu.org.
[2] “LLVM,” Accessed: 2020, https://llvm.org.
[3] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,

“A survey of compiler testing,” ACM Computing Surveys, vol. 53, no. 1,
pp. 1–36, 2020.

[4] D. A. Padua and M. J. Wolfe, “Advanced compiler optimizations for
supercomputers,” Communications of the ACM, vol. 29, no. 12, pp.
1184–1201, 1986.

[5] Y. Chen, S. Fang, Y. Huang, L. Eeckhout, G. Fursin, O. Temam, and
C. Wu, “Deconstructing iterative optimization,” ACM Transactions on
Architecture and Code Optimization, vol. 9, no. 3, pp. 1–30, 2012.

[6] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano, “A
survey on compiler autotuning using machine learning,” ACM Comput.
Surv., vol. 51, no. 5, pp. 96:1–96:42, 2019.

[7] A. H. Ashouri, G. Mariani, G. Palermo, and C. Silvano, “A bayesian
network approach for compiler auto-tuning for embedded processors,” in
12th IEEE Symposium on Embedded Systems for Real-time Multimedia,
2014, pp. 90–97.

[8] F. V. Agakov, E. V. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P.
O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams, “Using
machine learning to focus iterative optimization,” in Fourth IEEE/ACM
International Symposium on Code Generation and Optimization, 2006,
pp. 295–305.

[9] J. Cavazos, G. Fursin, F. V. Agakov, E. V. Bonilla, M. F. P. O’Boyle,
and O. Temam, “Rapidly selecting good compiler optimizations using
performance counters,” in Fifth International Symposium on Code Gen-
eration and Optimization, 2007, pp. 185–197.

[10] U. Garciarena and R. Santana, “Evolutionary optimization of compiler
flag selection by learning and exploiting flags interactions,” in Proceed-
ings of the 2016 on Genetic and Evolutionary Computation Conference
Companion, 2016, pp. 1159–1166.

[11] L. P. Cáceres, F. Pagnozzi, A. Franzin, and T. Stützle, “Automatic con-
figuration of gcc using irace,” in International Conference on Artificial
Evolution (Evolution Artificielle). Springer, 2017, pp. 202–216.

[12] J. Mockus, Bayesian approach to global optimization: theory and
applications. Springer Science & Business Media, 2012, vol. 37.

[13] M. P. Ranjit, G. Ganapathy, K. Sridhar, and V. Arumugham, “Efficient
deep learning hyperparameter tuning using cloud infrastructure: Intel-
ligent distributed hyperparameter tuning with bayesian optimization in
the cloud,” in 12th IEEE International Conference on Cloud Computing,
2019, pp. 520–522.

[14] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer
School on Machine Learning. Springer, 2003, pp. 63–71.

[15] P. I. Frazier, “A tutorial on bayesian optimization,” CoRR, vol.
abs/1807.02811, 2018.

[16] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in neural information
processing systems, 2011, pp. 2546–2554.

[17] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration (extended version),”
Technical Report TR-2010–10, University of British Columbia, Com-
puter Science, Tech. Rep., 2010.

[18] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[19] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie, “An
empirical comparison of compiler testing techniques,” in Proceedings of
the 38th International Conference on Software Engineering, 2016, pp.
180–190.

[20] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie, “Learning to
prioritize test programs for compiler testing,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering, 2017, pp. 700–711.

[21] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and
X. Bing, “Coverage prediction for accelerating compiler testing,” IEEE
Transactions on Software Engineering, 2018.

[22] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie,
“Test case prioritization for compilers: A text-vector based approach,”
in 2016 IEEE International Conference on Software Testing, Verification
and Validation, 2016, pp. 266–277.

[23] “cBench,” Accessed: 2020, https://ctuning.org/wiki/index.php/CTools:
CBench.

[24] “PolyBench,” Accessed: 2020, https://web.cse.ohio-state.edu/~pouchet.
2/software/polybench/.

[25] A. H. Ashouri, G. Mariani, G. Palermo, E. E. Park, J. Cavazos, and
C. Silvano, “Cobayn: Compiler autotuning framework using bayesian
networks,” ACM Transactions on Architecture and Code Optimization,
vol. 13, pp. 1–25, 06 2016.

[26] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam,
M. Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois,
F. Bodin, P. Barnard, E. Ashton, E. V. Bonilla, J. Thomson, C. K. I.
Williams, and M. F. P. O’Boyle, “Milepost gcc: Machine learning
enabled self-tuning compiler,” International Journal of Parallel Pro-
gramming, vol. 39, pp. 296–327, 2010.

[27] M. Kong, A. Pop, L.-N. Pouchet, R. Govindarajan, A. Cohen, and
P. Sadayappan, “Compiler/runtime framework for dynamic dataflow
parallelization of tiled programs,” ACM Transactions on Architecture
and Code Optimization, vol. 11, no. 4, pp. 1–30, 2015.

[28] E. Park, J. Cavazos, L.-N. Pouchet, C. Bastoul, A. Cohen, and P. Sa-
dayappan, “Predictive modeling in a polyhedral optimization space,”
International journal of parallel programming, vol. 41, no. 5, pp. 704–
750, 2013.

[29] M. Zuluaga, A. Krause, and M. Püschel, “ε-pal: an active learning
approach to the multi-objective optimization problem,” The Journal of
Machine Learning Research, vol. 17, no. 1, pp. 3619–3650, 2016.

[30] V. Nair, Z. Yu, T. Menzies, N. Siegmund, and S. Apel, “Finding faster
configurations using flash,” IEEE Transactions on Software Engineering,
2018.

[31] R. Benassi, J. Bect, and E. Vazquez, “Robust gaussian process-based
global optimization using a fully bayesian expected improvement cri-
terion,” in International Conference on Learning and Intelligent Opti-
mization. Springer, 2011, pp. 176–190.

[32] W.-Y. Loh, “Classification and regression trees,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14–
23, 2011.

[33] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, and G. Saake, “Predicting performance via automated
feature-interaction detection,” in 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 2012, pp. 167–177.

[34] J. Guo, D. Yang, N. Siegmund, S. Apel, A. Sarkar, P. Valov, K. Czar-
necki, A. Wasowski, and H. Yu, “Data-efficient performance learning for
configurable systems,” Empirical Software Engineering, vol. 23, no. 3,
pp. 1826–1867, 2018.

[35] H. Ha and H. Zhang, “Deepperf: performance prediction for configurable
software with deep sparse neural network,” in 2019 IEEE/ACM 41st

International Conference on Software Engineering. IEEE, 2019, pp.
1095–1106.

[36] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Mining configuration
constraints: static analyses and empirical results,” in 36th International
Conference on Software Engineering, 2014, pp. 140–151.

[37] M. Lillack, C. Kästner, and E. Bodden, “Tracking load-time configura-
tion options,” IEEE Trans. Software Eng., vol. 44, no. 12, pp. 1269–1291,
2018.

[38] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner, “Performance-
influence models for highly configurable systems,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
E. D. Nitto, M. Harman, and P. Heymans, Eds. ACM, 2015, pp. 284–
294.

[39] H. Ha and H. Zhang, “Performance-influence model for highly con-
figurable software with fourier learning and lasso regression,” in 2019
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2019, pp. 470–480.

[40] Y. Shen, M. Seeger, and A. Y. Ng, “Fast gaussian process regression
using kd-trees,” in Advances in neural information processing systems,
2006, pp. 1225–1232.

[41] Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. de Feitas, “Bayesian
optimization in a billion dimensions via random embeddings,” Journal
of Artificial Intelligence Research, vol. 55, pp. 361–387, 2016.

[42] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer,
“A comparison of decision tree ensemble creation techniques,” IEEE
transactions on pattern analysis and machine intelligence, vol. 29, no. 1,
pp. 173–180, 2006.

[43] B. Xu, J. Z. Huang, G. Williams, Q. Wang, and Y. Ye, “Classifying very
high-dimensional data with random forests built from small subspaces,”
International Journal of Data Warehousing and Mining, vol. 8, no. 2,
pp. 44–63, 2012.

[44] B. H. Menze, B. M. Kelm, R. Masuch, U. Himmelreich, P. Bachert,
W. Petrich, and F. A. Hamprecht, “A comparison of random forest and
its gini importance with standard chemometric methods for the fea-
ture selection and classification of spectral data,” BMC bioinformatics,
vol. 10, no. 1, pp. 1–16, 2009.

[45] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, and L. Zhang, “History-
guided configuration diversification for compiler test-program genera-
tion,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering, 2019, pp. 305–316.

[46] J. Chen, H. Ma, and L. Zhang, “Enhanced compiler bug isolation via
memoized search,” in 2020 35th IEEE/ACM International Conference
on Automated Software Engineering. IEEE, 2020, pp. 78–89.

[47] J. Chen, J. Han, P. Sun, L. Zhang, D. Hao, and L. Zhang, “Compiler bug
isolation via effective witness test program generation,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 223–234.

[48] S. Purini and L. Jain, “Finding good optimization sequences covering
program space,” ACM Transactions on Architecture and Code Optimiza-
tion, vol. 9, no. 4, pp. 1–23, 2013.

[49] J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter, “Bayesian
optimization with robust bayesian neural networks,” in Advances in
neural information processing systems, 2016, pp. 4134–4142.

[50] V. Dalibard, M. Schaarschmidt, and E. Yoneki, “Boat: Building auto-
tuners with structured bayesian optimization,” in Proceedings of the 26th
International Conference on World Wide Web, 2017, pp. 479–488.

[51] “scikit-learn,” Accessed: 2020, https://scikit-learn.org/stable/.
[52] “NumPy,” Accessed: 2020, https://numpy.org.
[53] L. P. Cáceres, F. Pagnozzi, A. Franzin, and T. Stützle, “Automatic con-

figuration of gcc using irace,” in International Conference on Artificial
Evolution (Evolution Artificielle). Springer, 2017, pp. 202–216.

[54] F. Wilcoxon, S. Katti, and R. A. Wilcox, “Critical values and probability
levels for the wilcoxon rank sum test and the wilcoxon signed rank test,”
Selected tables in mathematical statistics, vol. 1, pp. 171–259, 1970.

[55] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2011, pp. 283–294.

