
An Empirical Comparison of Compiler Testing Techniques∗

Junjie Chen1,2, Wenxiang Hu1,2, Dan Hao1,2†‡, Yingfei Xiong1,2‡,
Hongyu Zhang3‡, Lu Zhang1,2, Bing Xie1,2

1Key Laboratory of High Confidence Software Technologies (Peking University), MoE
2Institute of Software, EECS, Peking University, Beijing 100871, China

{chenjunjie,huwx,haodan,xiongyf,zhanglucs,xiebing}@pku.edu.cn
3Microsoft Research, Beijing 100080, China, honzhang@microsoft.com

ABSTRACT
Compilers, as one of the most important infrastructure of
today’s digital world, are expected to be trustworthy. Dif-
ferent testing techniques are developed for testing compilers
automatically. However, it is unknown so far how these test-
ing techniques compared to each other in terms of testing
effectiveness: how many bugs a testing technique can find
within a time limit.

In this paper, we conduct a systematic and comprehensive
empirical comparison of three compiler testing techniques,
namely, Randomized Differential Testing (RDT), a variant
of RDT—Different Optimization Levels (DOL), and Equiv-
alence Modulo Inputs (EMI). Our results show that DOL
is more effective at detecting bugs related to optimization,
whereas RDT is more effective at detecting other types of
bugs, and the three techniques can complement each other
to a certain degree.

Furthermore, in order to understand why their effective-
ness differs, we investigate three factors that influence the
effectiveness of compiler testing, namely, efficiency, strength
of test oracles, and effectiveness of generated test programs.
The results indicate that all the three factors are statistically
significant, and efficiency has the most significant impact.

1. INTRODUCTION
Compilers are important because they are widely used in

software development. Buggy compilers may lead to the un-
intended behaviors of developed programs, which may cause
software failures or even disasters in safety-critical domains.

∗We would like to acknowledge Zhendong Su and Chengnian
Sun at UC Davis for their valuable and insightful comments
on an early version of this paper. This work is supported by
the National Basic Research Program of China (973) under
Grant No. 2015CB352201, and the National Natural Science
Foundation of China under Grant No. 61421091, 91318301,
61332010, 61522201, 61225007, 61272089.
†Corresponding author.
‡Sorted in the alphabet order of the last names.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884878

Furthermore, compiler bugs make debugging more difficult
because developers can hardly determine whether software
failure is caused by the software they are developing or the
compilers they are using. Therefore, guaranteeing the qual-
ity of compilers is critical.

However, it is very challenging to guarantee the quality
of compilers. Although compilation theory and compiler de-
sign [1, 24, 8] have been thoroughly studied [10, 29, 32], in re-
ality, compilers still contain bugs [12]. Like many other soft-
ware systems, compiler testing suffers from the test-oracle
problem [2]. That is, it is hard to determine the expected
outputs of a compiler under test given some programs as the
test inputs.

To automate compiler testing without oracles, several tech-
niques have been proposed in the literature. Most of the
current work on compiler testing is based on Randomized
Differential Testing (RDT) [18, 29, 30, 31, 26], which as-
sumes that several comparable compilers are implemented
based on the same specification and detects bugs by com-
paring the outputs of these compilers for the same test pro-
gram. When these compilers produce different results, some
of the implementations must contain bugs. Furthermore, as
many compiler bugs reported in previous work are triggered
by compiler optimizations [29, 13], a simple testing tech-
nique is to compare the outputs of one compiler at different
optimization levels for the same test program. We call such
a technique Different Optimization Levels (DOL), which is
technically a variant of RDT. Recently, Le et al. [13] pro-
posed a compiler testing technique called Equivalence Mod-
ulo Inputs (EMI), which generates a series of variants from
an existing test program by guaranteeing the variants to be
equivalent to the test program under a set of test inputs. It
then detects bugs by comparing the outputs of the given test
program and those of the variants. The above-mentioned
work on compiler testing is widely recognized. For exam-
ple, the work on EMI [13] received the Distinguished Paper
award from PLDI 2014 and the work on RDT is widely used
in actual compiler testing practice [29].

Although existing studies have investigated the effective-
ness of the compiler testing techniques, they either use only
one compiler testing technique [29, 13] or focus on a small
domain of dedicated compilers (i.e., OpenCL compilers) [16].
To our best knowledge, it is yet unknown which of the three
techniques is more effective in detecting general compiler
bugs. Furthermore, because of the particularity of compil-
ers, in the remainder of this paper, “test programs” refers to
the inputs of compilers and “test inputs” refers to the inputs
of test programs.

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

 180

In this paper, we present a systematic and comprehensive
empirical comparison of the three automated compiler test-
ing techniques (RDT, DOL, and EMI). We implement the
three techniques and apply them to two mainstream open-
source C compilers (GCC and LLVM), which cover all C
compilers used in existing studies of compiler testing [13,
29]. To investigate the effectiveness of the three compiler
testing techniques, we qualitatively and quantitatively ana-
lyze the bugs detected by these techniques and derive our
findings.

A key challenge in this empirical comparison is to measure
the effectiveness of the compiler testing techniques. Ideally,
compiler testing techniques should be measured in terms
of the number of compiler bugs detected, but there is no
means for us to measure the number of bugs directly. Pre-
vious work has used two methods to approximate the ideal
measurement. Lidbury et al. [16] and Yang et al. [29] used
the number of test programs that detect faulty behaviors in
compilers. However, as will be shown in Section 5.1, this
measurement is highly inaccurate because different test pro-
grams can trigger the same bug. Le et al. [13] asked com-
piler developers to identify the test programs that trigger
the same bug, but this method does not scale well.

In this paper, we propose a new measurement: Correcting
Commits. When a test program fails on an early version of
the compiler, we check subsequent compiler commits, and
determine which commits correct the bugs. By using the
number of correcting commits to approximate the number
of bugs, our measurement avoids many of the inaccuracies
in previous studies.

Our empirical study also investigates three factors that
influence the effectiveness of compiler testing. We study
how the three techniques perform with respect to the three
factors and the statistical impact of the three factors on the
effectiveness of compiler testing. The three factors are:

• Efficiency: how many test programs can be tested
given a fixed period of time?

• Strength of test oracles: given the same test programs,
which technique detects more bugs?

• Effectiveness of generated test programs: EMI gener-
ates new variants from the original program. Do the
variants help discover more bugs than randomly gen-
erated programs?

The major findings that we obtain from the empirical com-
parison are as follows.

• DOL is more effective at detecting optimization-related
bugs and RDT is more effective at detecting optimization-
irrelevant bugs.

• RDT can substitute EMI and DOL in detecting
optimization-irrelevant bugs, but it can be substituted
by DOL in detecting optimization-related bugs. Fur-
thermore, both EMI and DOL cannot be substituted
in detecting optimization-related bugs.

• With respect to the three factors, we find the following.

– DOL is the most efficient technique, whereas EMI
is the least efficient one.

– RDT oracle is the strongest, whereas EMI oracle
is the weakest.

– The randomly generated programs are more ef-
fective than the variants generated by EMI.

– The impact of all the three factors is statistically
significant.

– Efficiency has the most significant impact on the
effectiveness of compiler testing, and the effective-
ness of generated test programs has the least sig-
nificant impact.

The main contributions of this paper can be summarized
as follows:

• A systematic and comprehensive empirical comparison
of automated compiler testing techniques and obtain
many valuable findings.

• A new measurement, Correcting Commits, which bet-
ter measures the effectiveness of compiler testing than
previous measurements.

2. COMPILER TESTING TECHNIQUES
In this section, we introduce the three automated compiler

testing techniques: RDT, DOL, and EMI.

2.1 Randomized Differential Testing
RDT [18, 29, 30, 31, 26] is a widely-used compiler testing

technique, which addresses the test oracle problem in com-
piler testing using two or more comparable compilers that
implement the same specification. Because these compa-
rable compilers should produce the same results under the
same set of test inputs, it is easy to determine which com-
pilers contain bugs through voting. That is, if more than
half of the compilers generate the same results, the results
are regarded as the correct results.

Given a set of compilers under test, denoted as {C1, C2, . . . ,
Cn} where n ≥ 3, the process for applying RDT to test
these compilers is as follows. Each compiler Ci compiles
a test program P and generates an executable Ei, where
1 ≤ i ≤ n. For any given set of test inputs for P , denoted
as I, these executables produce different results, denoted as
O1, O2, . . . , On. Because the compilers under test are de-
signed to follow the same specification, their behaviors are
expected to be the same. Therefore, RDT detects compiler
bugs through the voting among O1, O2, . . ., and On.

RDT is a well-known testing technique, which is applica-
ble to both compilers and other complex software because
it is effective and easy to implement. However, there is an
important limitation of RDT. Because these compilers could
be implemented in a similar manner or with some common
source code, it is possible for most or all comparable com-
pilers to produce the same wrong results under the same
set of test inputs. In this scenario, RDT can hardly detect
compiler bugs. Furthermore, if there is a new programming
language and only one compiler is available for this program-
ming language, RDT cannot be applied to test this compiler
at all.

2.2 Different Optimization Levels
As mentioned before, we consider a variant of RDT: com-

paring compilation results under different optimization lev-
els. That is, when a test program is respectively compiled
under different optimization levels (e.g., -O0, -O1, -Os, -O2
and -O3 in GCC) and executed under the same set of test

181

inputs, it may produce different results, thus we know that
the compiler under test contains bugs. For simplicity, in this
paper we informally call those bugs detected through differ-
ent optimization levels as “optimization-related bugs”, and
other bugs as “optimization-irrelevant bugs”.

Similar to RDT, DOL uses one test program each time,
thus it is easy to be implemented. Furthermore, DOL tar-
gets at only one compiler with different optimization levels,
thus it can directly test a specified optimizing compiler.

2.3 Equivalence Modulo Inputs
EMI [13] is a newly proposed compiler testing technique,

which addresses the test oracle problem through comparison
between a test program and its variants whose behaviors
are regarded as equivalent under a set of test inputs for
this test program. In particular, for a test program, EMI
identifies a set of statements that affect its behavior given
some test inputs, and constructs variants whose behaviors
are equivalent to the behavior of the test program. EMI
introduces a“Profile and Mutate”strategy on the statements
of the given test program and uses this strategy to generate
variants.

For a compiler under test (denoted as C), the process
for applying EMI to test this compiler is as follows. For
any given test program P and its test inputs I, EMI first
generates some variants of P (denoted as Q1, Q2, . . ., Qm)
through the following process. First, EMI identifies a set of
statements in P unexecuted by I through dynamic analy-
sis, and generates variants by randomly deleting statements
within this set. Then the test program P and each variant
Qi (1 ≤ i ≤ m) are compiled by the compiler C, and thus
the corresponding executables (denoted as Ep and Ei) are
generated. Taking I as test inputs, these executables pro-
duce results, denoted as Op and Oi (1 ≤ i ≤ m). Because
the variants should behave equivalently to given program P
under test inputs I, EMI detects the bugs in C by comparing
each pair Op and Oi, where 1 ≤ i ≤ m.

Although EMI is more complex than RDT and DOL, EMI
targets at only one compiler with/without different opti-
mization levels, thus it can directly test any specified com-
piler and overcome the limitation of RDT and DOL.

3. MEASUREMENT: CORRECTING COM-
MITS

In this paper, we propose a new measurement: Correcting
Commits. The new measurement is based on the analysis
of commit history of the compiler under test. For any test
program that triggers a bug of a compiler C whose commit
version is x, we check subsequent commits of the compiler,
and determine which commits correct the bug. To locate the
commit that corrects the corresponding bug, our approach
first finds a commit of the compiler that has already cor-
rected the bug, and then performs binary search between
the commit with the bug and the commit without the bug.

In the repository, branches can be created and later merged
back. However, in the commit history of the compilers used
in this study, we observe only the creation of branches but
not the merging of two branches. Therefore, we ignore merge
and represent the commit history by a tree, which is illus-
trated by Figure 1 where nodes represent commits and edges
represent the inheritance relation between commits.

To find the correcting commit quickly, we identify the

V0

V1

V2

V3

V4

V5

Figure 1: Tree Model for the Commit History

nodes that incur branches (e.g., V 0 and V 1) and terminate
branches (e.g., V 2 and V 4), which are called key nodes in
this paper, and use a tree structure with root node denoted
as Tree, to represent a commit history consisting of only
key nodes and their inheritance relation. In particular, the
root node is also regarded as a key node and represents the
version under test. Based on these key nodes, the commit
history is divided into several segments (e.g., V 0 − V 1 and
V 1−V 2), each of which is denoted as linked list LS(V s, V e),
representing that there is an inheritance path from the key
node V s to another key node V e. Given the commit history
composing of commits {V 0, V 1, . . . , V m}, where V 0 repre-
sents the compiler version under test and V m represents
its latest version or commit, and PS={P1, P2, . . . , Pn} rep-
resents the set of test programs that trigger bugs, we use
Algorithm 1 to calculate the number of commits correct-
ing the bugs triggered by PS. We use a set Set to record
the correcting commits. This algorithm repeats n times to
find the correcting commit for each test program Pi where
1 ≤ i ≤ n. In particular, Lines 2-3 deal with the event that
the bugs triggered by Pi are not corrected at all. Line 5 is to
find the correcting commit for Pi through the method Find
and add it to Set if this correcting commit has never been
added to Set. Line 8 is to produce the number of correcting
commits for PS.

Algorithm 2 presents the method Find, whose parameter
Tree refers to the commit history and P refers to the test
program that triggers a bug. The variable flag represents
the correcting commit if there exists for P . Algorithm 2
is a depth-first algorithm, which searches the tree from the
root node so as to find a key node (denoted as V ′) that
corrects the bugs detected by P . If no commit in the his-
tory corrects the corresponding bugs, the return value is set
to zero according to Lines 3 to 5; otherwise, the correcting
commit is in the linked list LS(V, V ′). In this case, this al-
gorithm finds the specific correcting commit in this linked
list through the widely used binary search algorithm (imple-
mented as BinarySearch(LS(V, V ′)) in this paper) [23].

Based on this algorithm, for any set of test programs that
trigger failing compiler behaviors, we can learn the num-
ber of correcting commits automatically. Being a measure-
ment for compiler testing, the number of correcting commits
tends to be more accurate than the number of test programs
in approximating the number of bugs, since one correcting
commit is often for fixing one bug. That is, this newly pro-
posed measurement may avoid some inaccuracies in previous
studies, which will be further studied in Section 5.1.

182

Algorithm 1 Correcting Commits Measurement

1: for each i (1 ≤ i ≤ n) do
2: if !Correct(Pi, Vm) then
3: Set.add(0)
4: else
5: Set.add(Find(Tree, Pi))
6: end if
7: end for
8: output(Set.size)

Algorithm 2 int Find(Tree,P)

1: V ← Tree
2: flag ← 0
3: if V.children() == NULL then
4: return 0
5: end if
6: for each i (0 ≤ i ≤ V.children.length) do
7: V ′ ← V.children[i]
8: if Correct(P, V ′) then
9: return BinarySearch(LS(V, V ′))

10: else
11: flag = Find(V ′, P)
12: if flag! = 0 then
13: return flag
14: end if
15: end if
16: end for
17: return 0

4. STUDY DESIGN

4.1 Subjects
We use two mainstream open-source C compilers GCC1

and LLVM2 for the x86 64-Linux platform as the subjects of
the empirical study, which are C compilers used in existing
studies of compiler testing [13, 29]. Because it is impossible
to determine which compiler is wrong when applying RDT to
only two compilers, we add another C compiler ICC3 to our
empirical study; this is a commercial optimizing compiler
from Intel with high reliability. The ICC compiler serves as
the golden compiler4 in the RDT experiment.

In particular, in the empirical study, we use GCC 4.4.3
and LLVM 2.6. We choose these versions because they are
based on the same C99 specification. Therefore, they can
be viewed as comparable compilers, thus satisfying the re-
quirements of RDT.

4.2 Measurement of Testing Effectiveness
In the empirical study, we use the number of test programs

that reveal compiler bugs and the number of correcting com-
mits obtained by the approach described in Section 3, to
measure the effectiveness of a compiler testing technique. In
particular, in our study, all the bugs detected by the three
techniques have been fixed by correcting commits. If no
confusion is caused, we use the number of bugs to directly

1http://gcc.gnu.org/.
2The LLVM project is a collection of compiler and toolchain
techniques, which is accessible at http://llvm.org/. To be
consistent with previous work on compiler testing, we also
use LLVM to represent the compiler used in LLVM, which
is mainly Clang.
3https://software.intel.com/en-us/c-compilers.
4The golden compiler is used to determine which compiler
is wrong if the two compared compilers produce different
results.

refer to the number of correcting commits in the remainder
of this paper.

4.3 Test Programs
To compare the effectiveness of the three compiler testing

techniques, we use CSmith [29] to generate a set of test pro-
grams and use this set of test programs as the inputs to the
compilers. CSmith is a widely used test generation tool for
C compilers, which randomly generates C programs with-
out undefined behavior. In this study, we use CSmith 2.2.0
with its default configuration. The test programs generated
by CSmith do not require external inputs, and its output is
a checksum of their non-pointer global variables at the end
of the test-program execution. That is, we do not need to
generate test inputs for these test programs.

In particular, for EMI, besides these test programs, vari-
ants are generated when applying the standard “Profile and
Mutate” strategy (described in Section 2.3) to the test pro-
grams. In particular, for each test program generated by
CSmith, we generate eight variants5 by deleting the unexe-
cuted statements randomly following Le et al. [13].

4.4 Process
To reduce the influence of test programs in the comparison

of compiler testing techniques, we prepare a fixed sequence
of randomly generated test programs so that the compared
compiler testing techniques use the same test programs in
this empirical study.

Given a subject compiler, we run each of the three com-
piler testing techniques for 90 consecutive hours by taking
these test programs as inputs, and record the test programs
with which the corresponding compiler testing technique de-
tects bugs. To compare the three compiler testing tech-
niques, we calculate the number of test programs that detect
compiler bugs and the number of compiler bugs detected by
each compiler testing technique. The process of evaluating
these compiler testing techniques in this study is as follows.

First, we apply RDT to test the two compilers GCC and
LLVM. Following the prior work [29], we compile each test
program with GCC and LLVM under the same optimiza-
tion level, which contain -O0, -O1, -Os, -O2 and -O3. We
compiler each test program with ICC without any optimiza-
tions. We then execute the corresponding executables. If the
test results produced by GCC and LLVM are different, at
least one compiler is wrong. At this time, by comparing the
results produced by ICC, GCC, and LLVM, we determine
in which compiler the corresponding test program detects a
bug. That is, we regard ICC as the golden compiler when
GCC and LLVM produce different results.

Second, we apply EMI to test the two compilers. We ex-
ecute the original test program and the eight variants, and
compare the result of each variant with the result of the orig-
inal program. Following the prior work [13], we use five opti-
mization levels (i.e., -O0, -O1, -Os, -O2 and -O3) to compile
the original test program and its variants, respectively. We
determine whether the compiler under test contains bugs by
comparing the output of the original test program and each
of its variants. If the output of the original test program
is different from that of the variant, this pair of programs
detects a bug in the compiler.

Third, we apply DOL to test the two compilers. We com-
pile each test program using the same compiler under dif-

5The number of variants is recommended by their paper [13].

183

ferent optimization levels (i.e., -O0, -O1, -Os, -O2 and -O3),
and compare the execution results produced by each opti-
mization level (i.e., -O1, -Os, -O2 and -O3) with that pro-
duced by -O0 (i.e., no optimization at all).

Our empirical study was conducted on a workstation with
eight-core Intel Xeon E5620 CPU (2.4GHz) with 24G mem-
ory, and Ubuntu 12.04.5 operating system.

5. RESULTS AND ANALYSIS
As measurement is the base of an empirical study, in this

section, we first quantitatively compare the newly proposed
measurement (i.e., Correcting Commits) with the mostly
used measurement (i.e., the number of test programs) on
their accuracies (in Section 5.1). That is, this study aims
to tell which measurement is more accurate in evaluating
compiler testing.

Based on the new measurement, we compare the three
compiler testing techniques in terms of their effectiveness,
substitutability, and the characteristics of detected bugs (in
Section 5.2). That is, this study aims to tell which compiler
testing technique should be applied in practice.

The inherent difference of the three compiler testing tech-
niques lies in the test programs and oracles. For test pro-
grams, RDT and DOL do not have any novelty, but EMI
defines a new type of test programs, i.e., variants generated
based on existing test programs. For test oracles, RDT,
DOL, and EMI use various mechanisms, i.e., relation be-
tween compilers/optimizations/programs. Furthermore, as
compiler testing usually takes a long time, the efficiency is-
sue, i.e., how many test programs are used in compiler test-
ing in a given period of time, is also an important internal
factor that influences how a compiler testing technique per-
forms. Therefore, we further study the impact of these in-
herent factors (in Section 5.3) so as to learn the secret why
a compiler testing technique performs well.

Besides, many C compiler bugs reported in the literature
are optimization-related bugs. Therefore, we further inves-
tigate how optimization levels influence compiler testing (in
Section 5.4).

The experimental data is available at the project web-
page6.

5.1 Measurement Comparison
As mentioned in Section 1, previous work measured the

effectiveness of compiler testing techniques by the number
of test programs that detect faulty behavior in compilers,
but it may be inaccurate because different test programs
may trigger the same bug. In this section, we evaluate the
accuracy of their measurement.

We manually check five commits of GCC, each of which
fixes only one GCC bug. Table 1 presents the number of
test programs that trigger the five bugs, respectively. From
this table, the distribution of the number of test programs
that trigger each bug is extremely uneven, because 877 test
programs trigger the 5th bug and only one test program trig-
gers the 2nd bug. That is, the measurement that uses the
number of test programs can obtain very inaccurate results.
However, during the development of compilers, one commit
cannot correct hundreds of bugs. In other words, the number
of correcting commits is much closer to the ideal measure-
ment (i.e., the number of detected bugs) than the number of

6http://emponcc.github.io/

test programs that trigger bugs. Therefore, this is evidence
for the necessity of using the number of correcting commits
rather than the number of test programs as a measurement
in compiler testing.

Table 1: Number of Test Programs Triggering Bugs
Bug 1st 2nd 3rd 4th 5th

Test Programs Triggering Bugs 17 1 1 1 877

Furthermore, Table 2 presents the number of bugs de-
tected by the three compared techniques and the number of
test programs that trigger bugs during the 90 hours of ex-
periments. From this table, we find that the number of test
programs can lead to the wrong conclusion in measuring the
effectiveness of compiler testing techniques, because DOL
detects the largest total number of bugs under our measure-
ment but its number of the test programs that trigger these
bugs is smaller than that of RDT. This is another evidence
for the necessity of using the number of correcting commits
rather than the number of test programs as a measurement
in compiler testing.

Finding 1:
The number of test programs that trigger bugs is an inaccu-
rate measurement in compiler testing, and thus the number
of correcting commits is necessary as a measurement.

5.2 Compiler Testing Technique Comparison

5.2.1 Effectiveness
• Number of Detected Bugs
From Table 2, the total number of bugs detected by DOL

(31) is larger than that by EMI (16) and RDT (26). Among
the three compiler testing techniques, EMI detects the small-
est number of bugs. Furthermore, DOL detects the largest
number of GCC bugs, whereas RDT detects the largest num-
ber of LLVM bugs. That is, RDT and DOL seem to be more
effective than EMI.

Table 2: Effectiveness Comparison
Compilers Detected Bugs Test Programs that

Trigger Bugs
RDT EMI DOL RDT EMI DOL

GCC 12 12 18 422 492 954
LLVM 14 4 13 801 6 54
TOTAL 26 16 31 1,223 498 1,008

• Number of Bugs Detected per Ten Hours
Because compiler testing is costly, compiler testing tech-

niques are expected to detect bugs as early as possible.
Therefore, besides the total number of detected bugs, we
calculate the number of bugs detected per ten hours to mea-
sure the cost-effectiveness of the three compiler testing tech-
niques. Figure 2 presents the increased number of GCC and
LLVM bugs detected by the compared techniques with time
increasing. From Figure 2(a), the number of GCC bugs de-
tected by DOL is always larger than that by RDT and EMI,
and the increasing rate of DOL and EMI are obvious larger
than that of RDT. From Figure 2(b), the number of LLVM
bugs detected by either RDT or DOL is much larger than
that by EMI and their increasing rates are also larger than
EMI. In summary, DOL is superior to RDT and EMI in
GCC, and RDT and DOL are superior to EMI in LLVM.
• Time Spent on Detecting the First Bug
It is desirable for a testing technique to reveal the first bug

early so that developers can start debugging early. There-
fore, we further compare how much time each compiler test-
ing technique spends on detecting the first bug, and the re-

184

Time (h)

908070605040302010

N
u

m
b

e
r

o
f

B
u

g
s

20

15

10

5

0

DOL
EMI
RDT

(a) GCC

Time (h)

908070605040302010

N
u

m
b

e
r

o
f

B
u

g
s

15

10

5

0

DOL
EMI
RDT

(b) LLVM

Figure 2: Increased Number of Detected Bugs per
Ten Hours

sults are listed in Table 3. From this table, DOL requires the
least time to find the first GCC bug, whereas RDT requires
the least time to find the first LLVM bug.

Table 3: Time to Detect the First Bug (seconds)
Compilers RDT EMI DOL
GCC 116 978 84
LLVM 34 17,571 11,363

Finding 2:
DOL seems to be the most effective one at detecting GCC
bugs and RDT seems to be the most effective one at detect-
ing LLVM bugs in our experiments.

5.2.2 Substitutability
In the preceding analysis, we investigate the three tech-

niques based on one criterion, the total number of detected
bugs. However, there is another important criterion to com-
pare the three techniques: whether the bugs detected by one
compiler testing technique can be detected by the others. In
other words, we need to study the number of bugs that can
be detected by only one compiler testing technique, which
are called unique bugs for the corresponding technique in
this paper. The more unique bugs a compiler testing tech-
nique detects, the less substitutable the technique tends to
be. On the contrary, if a compiler testing technique can-
not detect any unique bug, it can be substituted by other
compiler testing techniques because all its detected bugs can
also be detected by the latter techniques.

To visualize the number of unique bugs detected by each
technique, we use Venn Diagrams [28] to represent the sets
of bugs detected by these techniques, as shown in Figure 3.
The three circles represent the sets of bugs detected by each
compiler testing technique. Each circle is divided into sev-
eral areas, each of which represents the set of bugs detected
by the corresponding technique, and it is marked by a letter
from A to G for reference. For example, the area marked by
“A” represents the set of unique bugs only detected by RDT.
The number in each area represents the number of elements
in the corresponding set. For example, in Figure 3(a), 0 in
Area A denotes that zero unique bug is detected by RDT
alone, whereas 5 in Area D denotes that five bugs are de-
tected by both RDT and DOL, but not by EMI.

From this figure, the number of GCC unique bugs detected
by RDT is zero, thus the combination of EMI and DOL can
completely substitute RDT in detecting GCC bugs. In fact,
Figure 3(a) shows that all GCC bugs detected by RDT are
also detected by DOL, but five GCC bugs detected by RDT
are not yet detected by EMI. Therefore, only DOL can com-
pletely substitute RDT in detecting GCC bugs. However,
from Figure 3(b), RDT has the largest number of LLVM

A

C B

D E

F

G

0

2 3

5 0

3

7

RDT

EMI DOL

(a) GCC

A

C B

D E

F

G

5

3 4

8 0

0
1

RDT

EMI DOL

(b) LLVM

Figure 3: Number of Unique Bugs

unique bugs (i.e., five). Moreover, the number of unique
GCC bugs detected by DOL is the largest of all (i.e., three),
and the number of unique LLVM bugs detected by DOL is
four. Therefore, DOL cannot be substituted by RDT and
EMI. Similarly, EMI cannot be also substituted by RDT
and DOL although it has the least effectiveness and cost-
effectiveness (described in Section 5.2.1). In summary, DOL
detects the most GCC unique bugs and RDT detects the
most LLVM unique bugs, and EMI can complement the
other two techniques because it can detect some unique bugs.

Finding 3:
DOL seems to be more effective at detecting GCC unique
bugs and RDT seems to be more effective at detecting LLVM
unique bugs. Furthermore, when detecting GCC bugs, RDT
can be substituted by DOL completely.

5.2.3 Optimization-Related/Irrelevant Bugs
In Section 2.2, we indicate that DOL is designed to de-

tect optimization-related bugs. That is, if a bug can be
detected by DOL, the bug is an optimization-related bug.
Therefore, we compile and execute the test programs that
trigger bugs by RDT and EMI, and determine whether the
test programs also trigger the bugs by DOL. If a bug de-
tected by RDT or EMI is also detected by DOL, the bug
is an optimization-related bug; otherwise, it is viewed as an
optimization-irrelevant bug.

Table 4 presents the number of optimization-related bugs
and optimization-irrelevant bugs detected by each compiler
testing technique. From this table, all the bugs detected by
EMI are optimization-related bugs, and the bugs detected
by RDT contain both types of bugs. In particular, DOL
detects the most optimization-related bugs, whereas RDT
detects the most optimization-irrelevant bugs. Therefore,
DOL seems to be more effective than RDT and EMI at de-
tecting optimization-related bugs, whereas RDT seems to be
more effective than EMI and DOL at detecting optimization-
irrelevant bugs. Furthermore, because all the GCC bugs
detected by the three techniques are optimization-related
bugs, GCC may have more optimization-related bugs than
optimization-irrelevant bugs, and this observation is consis-
tent with the conclusion from Le et al. [13].

In particular, we can complement the conclusion from Fig-
ure 3 based on the results in this section. In Figure 3, five
bugs in Area A of Figure 3(b) are optimization-irrelevant
bugs, and all the remaining bugs are optimization-related
bugs. Therefore, RDT can completely substitute EMI and
DOL at detecting optimization-irrelevant bugs and DOL
can completely substitute RDT at detecting optimization-
related bugs. EMI cannot be substituted by other techniques
in detecting optimization-related bugs because it detects five

185

unique optimization-related bugs. Similarly, DOL cannot be
substituted by other techniques in detecting optimization-
related bugs because it detects seven unique optimization-
related bugs.

Table 4: Comparison on Optimization-Related Bugs
and Optimization-Irrelevant Bugs

Bugs Optimization-Related Optimization-Irrelevant
RDT EMI DOL RDT EMI DOL

GCC 12 12 18 0 0 0
LLVM 9 4 13 5 0 0
TOTAL 21 16 31 5 0 0

Finding 4:
DOL seems to be more effective at detecting optimization-
related bugs, whereas RDT seems to be more effec-
tive at detecting optimization-irrelevant bugs. Further-
more, GCC may have more optimization-related bugs than
optimization-irrelevant bugs.

5.3 Impact of Inherent Factors

5.3.1 Efficiency
In this subsection, we first investigate the impact of effi-

ciency, which is the number of test programs actually used in
compiler testing in a given period of time. Table 5 presents
the number of test programs compiled and executed dur-
ing the experimental period (90 hours) for testing GCC and
LLVM by RDT, EMI and DOL, respectively. In particular,
the number of test programs for EMI in this table refers to
the number of original test programs.

This table indicates that, during the same period of time,
DOL uses the largest number of test programs, whereas EMI
uses the smallest. Therefore, DOL and EMI are the most
and least efficient, respectively. The observation is as ex-
pected. For each test program, RDT needs 11 compilations
because it needs three compilers, and it uses five optimiza-
tion levels for GCC and LLVM and one optimization level for
ICC. EMI needs 45 compilations because it generates eight
variants for each original test program and also uses five op-
timization levels for the compiler under test, and DOL needs
five compilations because it uses five optimization levels for
the compiler under test.

Table 5: Number of Test Programs Used During the
Experimental Period

Compilers RDT EMI DOL
GCC 27,990 4,794 62,552
LLVM 27,990 5,040 64,385

Furthermore, based on the preceding analysis, DOL de-
tects the largest number of bugs, which contains many unique
bugs, and EMI detects the smallest number of bugs. That
is, the more efficient the technique is, the larger the number
of detected bugs is. Therefore, efficiency is an important
factor that influences the effectiveness of compiler testing.

Finding 5:
DOL is the most efficient technique, whereas EMI is the
least efficient one.

5.3.2 Strength of Test Oracles
Similarly, in this subsection we investigate the strength of

test oracles: given the same test programs, which technique
detects more bugs. This is the second internal factor that
influences the effectiveness of compiler testing.

In fact, all three techniques are proposed to address the
test oracle problem. RDT determines whether a bug is de-

tected by comparing the results produced by different com-
pilers, and DOL determines whether a bug is detected by
comparing the results produced by different optimization
levels of the same compiler. In particular, EMI consists of
two novel components, including a variant generation com-
ponent and test oracle, which determines whether a bug is
detected by comparing the results of the test program and
its variants produced by the same compiler. In order to
investigate the strength of test oracles, we use the same pro-
grams including original test programs and their correspond-
ing variants generated by EMI to test GCC and LLVM by
the three test oracles.

Table 6 presents the results of investigating the strength
of test oracles. This table shows that, when using the same
programs including original test programs and their vari-
ants, RDT detects the largest number of bugs and unique
bugs, whereas EMI detects the smallest number of bugs and
unique bugs. In particular, when testing GCC, RDT de-
tects the same number of bugs and unique bugs with DOL.
Therefore, RDT oracle is the strongest whereas EMI oracle
is the weakest. When testing GCC, RDT oracle is as strong
as DOL oracle.

In practice, if combining the variant generation compo-
nent of EMI and RDT/DOL oracle, the effectiveness of the
combinations may be much better than that of EMI. There-
fore, the strength of test oracles is another factor that influ-
ences the effectiveness of compiler testing techniques.

Table 6: Strength of Test Oracles
Compilers Detected Bugs Unique Bugs

RDT EMI DOL RDT EMI DOL
GCC 18 12 18 0 0 0
LLVM 16 4 10 6 0 0
Total 34 16 28 6 0 0

Finding 6:
RDT and DOL oracles are stronger than EMI oracle, and
RDT oracle is not weaker than DOL oracle.

5.3.3 Effectiveness of Generated Test Programs
In this subsection, we investigate the impact of the third

factor: effectiveness of the generated test programs.
In this empirical comparison, there are two types of gen-

erated test programs, namely randomly generated programs
and variants generated by EMI. In order to investigate the
effectiveness of generated test programs, we use the same
number (i.e., 18,900) of randomly generated programs and
variants generated by EMI to test compilers using RDT and
DOL, and record the number of bugs detected by them,
respectively. We do not include EMI in this experiment,
because EMI cannot be applied when there is only the ran-
domly generated programs.

Table 7 presents the results of comparing the quality of
randomly generated programs and variants, where “Ran-
dom” represents the randomly generated programs. In par-
ticular, the number of unique bugs means the number of
bugs detected by the combination of a technique and a type
of programs but not detected by the combination of this
technique and the other type of programs.

Table 7 shows that, when RDT uses randomly generated
programs, it detects more bugs and unique bugs than when
it uses variants; when DOL uses randomly generated pro-
grams, it detects more bugs and unique bugs than when it
uses variants. Therefore, randomly generated programs de-
tect bugs more easily than variants. That is, RDT/DOL

186

that uses randomly generated programs may be a better
choice than RDT/DOL that uses variants in practice. How-
ever, the role of variants cannot be replaced because when
RDT/DOL uses variants, they also detect some unique bugs.
Therefore, the effectiveness of generated test programs is
also an important factor that influences the effectiveness of
compiler testing techniques.

Table 7: Effectiveness of Generated Test Programs
Compilers RDT DOL

Random Variant Random Variant
GCC Bugs 11 8 11 8
LLVM Bugs 9 6 4 2
GCC Unique Bugs 6 3 6 3
LLVM Unique Bugs 5 2 3 1

Finding 7:
The variants generated by EMI are less effective than ran-
domly generated programs by CSmith, but variants can
serve as a complement to randomly generated programs.

5.3.4 Statistical Significance
In this subsection, we analyze the impact of the three fac-

tors on compiler testing, and analyze which factor has more
significant impact. In statistics, this question can be re-
garded as a multivariable linear regression problem, namely,
analyzing the impact of three independent variables on a
dependent variable (i.e., the number of detected bugs). In
particular, efficiency is a quantitative variable, but the test
oracle and generated test program are qualitative variables,
thus we use dummy variables to represent them. There are
three test oracles, namely RDT oracle, EMI oracle and DOL
oracle. There are two types of generated test programs,
namely randomly generated programs and variants gener-
ated by EMI. We test GCC and LLVM under different com-
binations of test oracles and test programs. In particular,
we use the same randomly generated programs or variants.

Table 8 presents the results of statistics analysis. Due to
the lack of the combination of EMI oracle and randomly
generated programs, we perform the statistical analysis in
two steps. First, we analyze the impact of the three factors,
but the factor test oracles have only two values (i.e., RDT
oracle and DOL oracle). Second, we analyze the impact of
efficiency and the strength of test oracles, but test oracles
have three values this time, RDT oracle, EMI oracle and
DOL oracle. In this table, Rows 2 to 4 present the results
of the first statistical analysis, and Rows 5 to 7 present the
results of the second statistical analysis. The second col-
umn presents the coefficient of regression equation, and the
last column presents the significance value whose significant
level is set to 0.05. In particular, the absolute value of the
coefficient represents the degree of correlation, and its sign
represents positive correlation or negative correlation, and
the significance value reflect whether the factor has signifi-
cant impact on the effectiveness of compiler testing.

First, from this table, all the significance values are less
than 0.05, which means that the impact of the three factors
on the effectiveness of compiler testing is statistically signif-
icant. Then, based on the results of the first statistical anal-
ysis, the absolute value of the coefficient of efficiency is the
largest one, and that of “Program (Random v.s. Variant)”
is the smallest one, thus efficiency has the most significant
impact on the effectiveness of compiler testing, whereas the
effectiveness of the generated test program has the least sig-
nificant impact on it. Furthermore, the coefficient of “Test

Oracle (RDT v.s. DOL)” is -0.386, which is smaller than
0, thus RDT oracle is stronger than DOL oracle. Similarly,
the coefficient of“Program (Random v.s. Variant)” is -0.138,
which means that randomly generated programs are more ef-
fective than variants generated by EMI, confirming the con-
clusion of Section 5.3.3. Besides, based on the results of the
second statistical analysis, efficiency also has the most sig-
nificant impact on the effectiveness of compiler testing. Fur-
thermore, the coefficient of “Test Oracle (EMI v.s. RDT)” is
0.589, which means that RDT oracle is stronger than EMI
oracle, and the coefficient of “Test Oracle (EMI v.s. DOL)”
is 0.284, which means that DOL oracle is also stronger than
EMI oracle, confirming the conclusion of Section 5.3.2.

Table 8: Statistics
Factors Coefficient Sig
Test Oracle (RDT v.s. DOL) -0.386 0.041
Program (Random v.s. Variant) -0.138 0
Efficiency 0.824 0

Test Oracle (EMI v.s. RDT) 0.589 0
Test Oracle (EMI v.s. DOL) 0.284 0.002
Efficiency 0.777 0

Finding 8:
All the three factors have statistically significant impact on
the effectiveness of compiler testing, where efficiency has the
most significant impact and the effectiveness of generated
test programs has the least significant impact.

5.4 Influence of Optimization Levels
As many of the detected bugs are related to optimization

according to the preceding experiment results, we further
analyze the influence of optimization levels on triggering
compiler bugs. Here we present only the analysis results
of DOL, which is more effective at detecting optimization-
related bugs, due to space limitation.

Figure 4 presents the number of bugs detected with differ-
ent optimization levels (i.e., -O1, -Os, -O2 and -O3), respec-
tively, where the horizontal axis lists these optimization lev-
els. -O1 is the lowest optimization level, which implements
the basic optimization operations when compiling. From -
O1 to its right, -O3 is the highest optimization level, and
from -O1 to its left, -Os is higher than -O1 because -Os is a
special optimization level and adds some space optimization
operations based on -O1. In particular, -Oi&-Oj represents
the number of intersection of bugs detected at -Oi and bugs
detected at -Oj, where -Oi and -Oj are two adjacent opti-
mization levels. Furthermore, the vertical axis represents
the number of detected bugs.

In Figure 4(a), the numbers of bugs detected at -Os and
-O2 are the largest of all optimization levels, and in Fig-
ure 4(b), the numbers of bugs detected at -Os, -O2 and
-O3 are the largest of all optimization levels. It is easy to
take for granted that the higher the optimization level is,
the larger the number of detected bugs is, because a higher
optimization level contains all the optimization operations
from the lower optimization levels. However, the assumption
is invalid from Figure 4(a) because -O3 does not detect the
largest number of bugs, although it is the highest optimiza-
tion level among -O1, -O2 and -O3. On the other hand,
the number of bugs detected with two adjacent optimiza-
tion levels is usually smaller than the lower one. That is,
when using a higher optimization level, the bugs detected at
a lower optimization level may disappear. We suspect the
reason for this observation to be the combination of opti-

187

Optimization Levels

-O3-O2&-O3-O2-O1&-O2-O1-Os&-O1-Os

N
u

m
b

e
r

o
f

B
u

g
s

15

10

5

0

(a) GCC

Optimization Levels

-O3-O2&-O3-O2-O1&-O2-O1-Os&-O1-Os

N
u

m
b

e
r

o
f

B
u

g
s

12

10

8

6

4

2

0

(b) LLVM
Figure 4: Influence of Optimization Levels

mization options at certain optimization level. This conclu-
sion indicates that it is necessary to test a compiler under
different optimization levels.

Finding 9:
As some compiler bugs are only triggered by lower opti-
mization levels alone, it is necessary to test a compiler with
various optimization levels.

6. THREATS TO VALIDITY

6.1 Threats to Internal Validity
The threats to internal validity mainly lie in the imple-

mentation of the compiler testing techniques. First, because
the implementation of EMI, especially its “Profile and Mu-
tate” strategy, is not available, we implemented this tech-
nique using the same tool (LibTooling Library of Clang7)
as Le et.al [13] used. Furthermore, the number of variants
and the deletion probability may also affect the effective-
ness of EMI, we will explore their effect in future. Second,
when implementing RDT, we simply regard ICC as a golden
compiler, although it may happen to contain the same bug
as GCC or LLVM. To reduce this threat, in our study, we
turned off the optimization features of ICC when compiling
test programs using ICC, because it is safer when optimiza-
tions are disabled [29].

6.2 Threats to External Validity
The threats to external validity mainly lie in subjects and

test programs.
Subjects. In this study, we use two C compilers (i.e.,

GCC and LLVM) as subjects. Nevertheless, the two compil-
ers already cover all the C compilers used in existing studies
of compiler testing [29, 13]. In addition, since CSmith was
used to find bugs in GCC and LLVM before 2009 [29], the
compilers used in our paper may have already acquired a
certain amount of immunity to test programs generated by
CSmith, which may have an impact on the effectiveness of
these techniques. However, all the three techniques are fed
with the same test programs generated by CSmith, thus the
threat may not be serious.

Test Programs. In this empirical study, we use only
the test programs generated by CSmith as the inputs to
compilers. In the previous work on compiler testing [13,
16], in addition to these generated programs, compiler test
suites and existing open-source projects are used in compiler
testing. We do not use them in our study because (1) com-
piler test suites are ineffective in detecting bugs in released
compilers [13] (2) open-source projects usually contain code
with undefined behavior [16], and it is difficult to determine
whether the detected abnormalities are bugs.

6.3 Threats to Construct Validity
7http://clang.llvm.org/docs/LibTooling.html

The threats to construct validity mainly lie in the configu-
rations of RDT and EMI, the measurement of experimental
results, the randomness in our experiments and the testing
period of our experiments.

Configurations of RDT and EMI. In this study, when
testing compilers using RDT and EMI, we use five optimiza-
tion levels of the compilers under test, and EMI generated
eight variants for each test program. These configurations
may influence the effectiveness of these techniques. In order
to reduce this threat, we set these configurations of RDT
and EMI according to prior work [29, 13].

Measurement. In our study, we measure the effective-
ness of compiler testing techniques based on the number of
correcting commits. Although this automatic approach fa-
cilitates a systematic empirical study on compiler testing,
the identification results may not be very precise. That is,
the test programs that detect different bugs may be regarded
as detecting the same bug in our study, if these bugs are
corrected in the same commit. To verify the severity of this
threat, we check all the commits that we used in our study
and find that 11 commits state explicitly which bugs are
fixed by them, and each commit of them fixes only one bug.
That is, the threat may not be a serious threat in our study.
In the future, we will use those known bugs to provide com-
plementary evaluation in order to reduce the threat of our
new measurement.

Randomness. The randomness (i.e., randomly gener-
ated test programs) in our experiment may have an impact
on our conclusions. To reduce this threat, we adopt an ex-
tended period of testing time and repeat the experiments.
For all the experiments except Table 3, we adopt an ex-
tended period of testing time (i.e., 90 hours on each testing
technique) to offset the randomness threat because in our
experimental settings, adopting an extended period of test-
ing time is equivalent to repeating the experiments. For the
results in Table 3, we repeat this experiment to reduce the
threat of randomness. Based on five runs, the conclusion
from Table 3 still holds in all runs, and we select one of
these runs as the representative.

Testing Period. Some testing techniques have been ap-
plied to extremely long periods of testing. For example,
EMI has been used in testing the trunk version of C com-
pilers for 11 months [13]. Here is a question whether our
results obtained from 90 hours of testing can be generalized
to extremely long periods or not. We do not have a defini-
tive answer to the question yet. However, some trends can
be observed from Figure 2. On the increasing rate of de-
tected bugs from GCC, RDT is obviously slower than EMI
and DOL, while no obvious difference can be told between
EMI and DOL. In the case of LLVM, EMI is obviously slower
than DOL and RDT, while no obviously difference can be
told from DOL and RDT.

7. DISCUSSION

7.1 About Optimization
Based on Section 5.3, efficiency has the most significant

impact on the effectiveness of compiler testing. The higher
the efficiency is, the larger the number of detected bugs is.
That is, to improve the effectiveness, compiler testing tech-
niques should be designed to deal with as many test pro-
grams as possible in any given period of time. We further
analyzed the three compiler testing techniques and found

188

that optimization levels influence their efficiency a lot. The
more optimization levels are used, the fewer test programs
can be used in any given period of time. That is, using many
optimization levels seems to harm the effectiveness of com-
piler testing. However, due to the conclusion in Section 5.4,
using all the optimization levels is preferable considering bug
detection. That is, there is a dilemma in the choice of op-
timization levels. Therefore, in the future, we need to find
some combinations of optimization levels to maximize the
effectiveness of compiler testing.

7.2 About Inherent Factors of Compiler Test-
ing Techniques

Besides the widely concerned test oracles, EMI presents
a new type of test programs, which are variants generated
based on existing test programs. Based on the preceding
analysis, these variants are less effective than randomly gen-
erated programs, but the former can still detect some unique
bugs. That is, being a new type of test programs, variants
can serve as a complement to randomly generated test pro-
grams. Furthermore, we find both RDT and DOL oracles
are stronger than EMI, using RDT oracle or DOL oracle as
guide, generating test programs aiming at specific test ora-
cle may be an effective way of improving the effectiveness of
compiler testing. Besides, as efficiency is more important for
compiler testing than generated test programs and oracles,
compiler testing techniques should be designed to support
the execution of more test programs in any given period
of time. In the future, we need to explore how to balance
these factors to improve the effectiveness of compiler testing
through the generation or optimization of test programs.

7.3 About Practical Usage
Our findings suggest that, in practice we could use all the

three techniques to test compilers in the order of DOL, RDT,
and EMI, because DOL is the most efficient technique and
RDT is the second efficient technique, and both RDT and
EMI can detect unique bugs.

8. RELATED WORK
The most relevant work are the studies about compiler

testing. Yang et al. [29] and Le et al. [13] investigated the
effectiveness of RDT and EMI, respectively, and both of
them analyzed compiler bugs in detail, but they focused on
only one compiler testing technique. Lidbury et al. [16] eval-
uated the effectiveness of RDT and EMI, but they focused
on a small domain of dedicated compilers—OpenCL compil-
ers. In our work, we present a systematic and comprehen-
sive empirical comparison of all the three compiler testing
techniques (i.e., RDT, DOL and EMI) on two mainstream
open-source C compilers (i.e., GCC and LLVM) and propose
a new measurement: Correcting Commits.

Besides, test program generation is also an important as-
pect in compiler testing. When applying differential testing
to compiler testing, one of the main challenge lies in the gen-
eration of test programs. According to the survey conducted
by Boujarwah and Saleh [4], a large amount of work focuses
on generating test programs to facilitate compiler testing.
McKeeman [18] proposed to construct new C programs by
adding or deleting some elements (in different levels) to any
given C program. To our knowledge, his work is the first to
emphasize the importance of avoiding undefined behavior in
generated C test programs for testing C compilers. However,

his work cannot generate C programs without undefined be-
haviors. Bazzichi and Spadafora [3] proposed to generate
programs through a tabular description of the source lan-
guage. Hanford [9] proposed to use a PL/1 grammar to
generate programs randomly. Kalinov et al. [11] proposed
an approach to generating compiler test suite automatically
based on several coverage criteria. Zhao et al. [31] developed
an integrated tool (JTT) driven by test specification to auto-
matically generate programs to test UniPhier, an embedded
C++ compiler. Nagai et al. [19, 20] proposed to generate C
programs, which contain randomly generated arithmetic ex-
pressions and successfully avoid undefined behaviors, to test
C compilers’ arithmetic optimization. Lindig [17] proposed
to use randomly generated C programs to test the consis-
tency of C compilers. His tool (Quest) is type-directed and
can be controlled by the user, rather than depends on con-
trol flow and arithmetic. Sheridan [26] proposed to test C99
compilers by comparing the behaviors of randomly gener-
ated programs using C99 compilers and using pre-existing
tools. In addition, Sauder [25] proposed to test the logic
of the COBOL compiler by placing random variables in the
data sections of the programs. Pa lka et al. [21] proposed
to randomly generate lambda terms to test an optimizing
compiler, which mainly addresses the type-correct issue in
generation. Callahan et al. [5] proposed to test the effective-
ness of vectorizing compilers by a collection of 100 Fortran
loops. Recently, CSmith [29, 7, 22] is proposed and imple-
mented to randomly generate C programs without undefined
behavior for testing C compilers.

Unlike random differential testing, Le et al. [13] proposed
to generate some equivalent variants for each test program
and detect bugs by comparing their behaviors. Similarly,
Tao et al. [27] proposed to detect bugs by comparing the
behaviors of several programs whose metamorphic relation
is equivalence relation. Recently, Le et al. [14] proposed
an advanced EMI to detect compiler bugs by using more
mutation operations for test programs and by introducing
Markov Chain Monte Carlo (MCMC) optimization to ex-
plore the search space. Furthermore, Le et al. [15] proposed
to detect bugs of link-time optimizers by randomized stress-
testing, and reported 37 bugs. Besides, in order to detect
compiler bugs earlier, Chen et al. [6] proposed a test-vector
based approach to prioritize test programs for compilers.

9. CONCLUSION
This work is a systematic and comprehensive empirical

study that compares different compiler testing techniques:
RDT, DOL, and EMI. From our study, we obtain some inter-
esting findings. For testing compilers containing optimization-
related bugs, DOL is more effective, and for testing compil-
ers containing other types of bugs, RDT is more effective.
In addition, there are three factors that influence the effec-
tiveness of compiler testing, namely, efficiency, strength of
test oracles and effectiveness of generated test programs, and
their impacts are statistical significant. In particular, DOL
is the most efficient technique, whereas EMI is the least effi-
cient one; RDT oracle is the strongest, whereas EMI oracle
is the weakest; the randomly generated programs are more
effective than variants generated by EMI.

10. REFERENCES
[1] A. V. Aho. Compilers: Principles, Techniques and

189

Tools (for Anna University), 2/e. Pearson Education
India, 2003.

[2] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and
S. Yoo. The oracle problem in software testing: A
survey. IEEE Transactions on Software Engineering,
41(5):507–525, 2015.

[3] F. Bazzichi and I. Spadafora. An automatic generator
for compiler testing. IEEE Transactions on Software
Engineering, (4):343–353, 1982.

[4] A. S. Boujarwah and K. Saleh. Compiler test case
generation methods: A survey and assessment.
Information and software technology, 39(9):617–625,
1997.

[5] D. Callahan, J. Dongarra, and D. Levine. Vectorizing
compilers: A test suite and results. In Proceedings of
the 1988 ACM/IEEE conference on Supercomputing,
pages 98–105. IEEE, 1988.

[6] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang,
L. Zhang, and B. Xie. Test case prioritization for
compilers: A text-vector based approach. In
Proceedings of the 9th International Conference on
Software Testing, Verification and Validation, 2016.

[7] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern,
E. Eide, and J. Regehr. Taming compiler fuzzers. In
Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, pages 197–208. ACM, 2013.

[8] Y. Ding, J. Mei, and H. Cheng. Design and
implementation of java just-in-time compiler. Journal
of Computer Science and Technology, 15(6):584–590,
2000.

[9] K. V. Hanford. Automatic generation of test cases.
IBM Systems Journal, 9(4):242–257, 1970.

[10] W. Harrison. Introduction to compiler construction.
2013.

[11] A. Kalinov, A. Kossatchev, A. Petrenko, M. Posypkin,
and V. Shishkov. Coverage-driven automated compiler
test suite generation. Electronic Notes in Theoretical
Computer Science, 82(3):500–514, 2003.

[12] A. Kossatchev and M. Posypkin. Survey of compiler
testing methods. Programming and Computer
Software, 31(1):10–19, 2005.

[13] V. Le, M. Afshari, and Z. Su. Compiler validation via
equivalence modulo inputs. In Proceedings of the 35th
Conference on Programming Language Design and
Implementation, pages 216–226. ACM, 2014.

[14] V. Le, C. Sun, and Z. Su. Finding deep compiler bugs
via guided stochastic program mutation. In
Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 386–399.
ACM, 2015.

[15] V. Le, C. Sun, and Z. Su. Randomized stress-testing
of link-time optimizers. In Proceedings of the 2015
International Symposium on Software Testing and
Analysis, pages 327–337. ACM, 2015.

[16] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson.
Many-core complier fuzzing. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 65–76,
2015.

[17] C. Lindig. Random testing of C calling conventions. In

Proceedings of the 6th international symposium on
Automated analysis-driven debugging, pages 3–12.
ACM, 2005.

[18] W. M. McKeeman. Differential testing for software.
Digital Technical Journal, 10(1):100–107, 1998.

[19] E. Nagai, H. Awazu, N. Ishiura, and N. Takeda.
Random testing of C compilers targeting arithmetic
optimization. In Workshop on Synthesis And System
Integration of Mixed Information Technologies, pages
48–53, 2012.

[20] E. Nagai, A. Hashimoto, and N. Ishiura. Scaling up
size and number of expressions in random testing of
arithmetic optimization of C compilers. In Workshop
on Synthesis And System Integration of Mixed
Information Technologies, pages 88–93, 2013.

[21] M. H. Pa lka, K. Claessen, A. Russo, and J. Hughes.
Testing an optimising compiler by generating random
lambda terms. In Proceedings of the 6th International
Workshop on Automation of Software Test, pages
91–97. ACM, 2011.

[22] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and
X. Yang. Test-case reduction for C compiler bugs. In
Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and
Implementation, pages 335–346. ACM, 2012.

[23] R. L. Rivest and C. E. Leiserson. Introduction to
algorithms. McGraw-Hill, Inc., 1990.

[24] H. Samet. Compiler testing via symbolic
interpretation. In Proceedings of the 1976 annual
conference, pages 492–497. ACM, 1976.

[25] R. L. Sauder. A general test data generator for
COBOL. In Proceedings of Spring Joint Computer
Conference, pages 317–323. ACM, 1962.

[26] F. Sheridan. Practical testing of a C99 compiler using
output comparison. Software: Practice and
Experience, 37(14):1475–1488, 2007.

[27] Q. Tao, W. Wu, C. Zhao, and W. Shen. An automatic
testing approach for compiler based on metamorphic
testing technique. In Proceedings of the 17th Asia
Pacific Software Engineering Conference, pages
270–279. IEEE, 2010.

[28] J. Venn. On the diagrammatic and mechanical
representation of propositions and reasonings. The
London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 10(59):1–18, 1880.

[29] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding
and understanding bugs in C compilers. In Proceedings
of the 32nd Conference on Programming Language
Design and Implementation, pages 283–294, 2011.

[30] T. Yoshikawa, K. Shimura, and T. Ozawa. Random
program generator for Java JIT compiler test system.
In Proceedings of the 3rd International Conference on
Quality Software, pages 20–23. IEEE, 2003.

[31] C. Zhao, Y. Xue, Q. Tao, L. Guo, and Z. Wang.
Automated test program generation for an industrial
optimizing compiler. In ICSE Workshop on
Automation of Software Test, pages 36–43. IEEE,
2009.

[32] G. Zhu, L. Xie, and Z. Sun. Nuapc: A parallelizing
compiler for c++. Journal of Computer Science and
Technology, 12(5):458–469, 1997.

190

