
Optimizing Test Prioritization via Test Distribution Analysis∗

Junjie Chen
Yiling Lou

HCST (Peking University), MoE
China

{chenjunjie,louyiling}@pku.edu.cn

Lingming Zhang
Department of Computer Science,

University of Texas at Dallas
USA

lingming.zhang@utdallas.edu

Jianyi Zhou
HCST (Peking University), MoE

China
zhoujianyi@pku.edu.cn

Xiaoleng Wang
Baidu Online Network Technology

(Beijing) Co., Ltd
China

wangxiaoleng@baidu.com

Dan Hao†
Lu Zhang

HCST (Peking University), MoE
China

{haodan,zhanglucs}@pku.edu.cn

ABSTRACT
Test prioritization aims to detect regression faults faster via re-
ordering test executions, and a large number of test prioritization
techniques have been proposed accordingly. However, test priori-
tization e�ectiveness is usually measured in terms of the average
percentage of faults detected concerned with the number of test
executions, rather than the actual regression testing time, making
it unclear which technique is optimal in actual regression testing
time. To answer this question, this paper �rst conducts an empirical
study to investigate the actual regression testing time of various
prioritization techniques. The results reveal a number of practical
guidelines. In particular, no prioritization technique can always
perform optimal in practice.

To achieve the optimal prioritization e�ectiveness for any given
project in practice, based on the �ndings of this study, we design
learning-based Predictive Test Prioritization (PTP). PTP predicts
the optimal prioritization technique for a given project based on
the test distribution analysis (i.e., the distribution of test coverage,
testing time, and coverage per unit time). The results show that
PTP correctly predicts the optimal prioritization technique for 46
out of 50 open-source projects from GitHub, outperforming state-
of-the-art techniques signi�cantly in regression testing time, e.g.,
43.16% to 94.92% improvement in detecting the �rst regression fault.
Furthermore, PTP has been successfully integrated into the practical
testing infrastructure of Baidu (a search service provider with over
600M monthly active users), and received positive feedbacks from

∗This work is partially supported by National Key Research and Development Program
of China Grant No. 2017YFB1001803, NSFC Grant Nos. 61672047, 61529201, 61522201,
and 61861130363; it is also partially supported by NSF Grant Nos. CCF-1566589, CCF-
1763906, UT Dallas start-up fund, Google, Huawei, and Samsung.
†Corresponding author
‡HCST is short for Key Lab of High Con�dence Software Technologies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236053

the testing team of this company, e.g., saving beyond 2X testing
costs with negligible overheads.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
Regression Testing, Test Prioritization, Machine Learning
ACM Reference Format:
Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang, Dan
Hao, and Lu Zhang. 2018. Optimizing Test Prioritization via Test Distri-
bution Analysis. In Proceedings of the 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA.ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3236024.3236053
1 INTRODUCTION
Test prioritization [23, 60, 64, 69, 75], one of the most widely studied
regression testing approaches [37, 40, 66, 78], aims to reorder test
executions with the goal of detecting more faults earlier [67]. To
date, based on whether considering test execution costs, various
cost-unaware techniques [55, 74] and cost-aware techniques [35, 61]
have been proposed. These existing prioritization techniques are
mostly evaluated based on Average Percentage of Faults Detected
(APFD) [44, 58], which calculates the average rate of faults detected
when executing di�erent numbers of tests. However, APFD assumes
that all the tests have the same execution time and treats them
equivalently [33], which is usually not true in practice. For example,
for the project MapDB [7] used in this paper, the test with the
longest running time spends 8.8⇤105Xmore time than that with the
shortest running time. To address this measurement issue, Elbaum
et al. [33] proposed a cost-cognizant version of APFD — APFDc ,
which considers di�erent test costs and fault severities. Since fault
severities can be hard to determine in practice, Epitropakis et al. [35]
further simpli�ed this measurement by assuming all faults have
the same severity. However, to date, there lack extensive studies
uniformly comparing both cost-unaware and cost-aware techniques
in terms of bothAPFD andAPFDc , and thus it is yet unknownwhich
test prioritization technique performs optimal in practice.

To answer this question, we �rst conduct an empirical study of
widely-used prioritization techniques in terms of both APFD and

656

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, L. Zhang

APFDc on 14 open-source projects from GitHub. The studied tech-
niques include four widely-studied cost-unaware techniques (i.e.,
the total technique, the additional technique [67], the search-based
technique [55], and the adaptive random technique [50]), a state-
of-the-art cost-aware technique (i.e., the cost-cognizant additional
technique [61]), and also a baseline technique (i.e., the cost-only
technique that simply prioritizes tests based on the ascending order
of test execution time). Our study reveals various practical guide-
lines. In particular, there is no type of test prioritization techniques
that can always perform optimal in terms of the APFDc measure-
ment. For example, the state-of-the-art additional technique does
not perform well in terms of APFDc , while the minimalist cost-only
technique can perform rather well in some cases.

To achieve the optimal prioritization e�ectiveness for any given
project in practice, we further propose a Predictive Test Prioritiza-
tion approach (PTP), which optimizes test prioritization by guiding
the selection of prioritization techniques (i.e., cost-unaware, cost-
aware, and cost-only techniques) via machine learning. There are
two main challenges in PTP. The �rst one is which characteris-
tics can impact the selection of prioritization techniques. Through
quantitatively and qualitatively analyzing the study results, we �nd
that the distribution of test coverage, testing time, and coverage per
unit time can greatly in�uence the e�ectiveness of prioritization
techniques. This is also the key insight of PTP. The test coverage,
testing time, and coverage per unit time of each test are regarded
as basic features, and then how to utilize such basic features to
predict the optimal prioritization technique is the second challenge.
Based on the observations in the study, the high-level distribution
patterns constructed from these basic features are more directly
related to the optimal prioritization. Therefore, in PTP we adopt the
recently proposed XGBoost (short for eXtreme Gradient Boosting)
algorithm that can e�ectively learn high-level features [28].

PTP builds a predictive model via XGBoost by collecting three
groups of features (i.e., distribution of test coverage, testing time,
and coverage per time unit) on existing projects and labeling which
prioritization technique performs optimal on the training data.
Based on this model, for a new project PTP can directly predict
which prioritization technique performs optimal in practice. To
su�ciently evaluate the e�ectiveness of PTP, we conduct a study
on the same 14 projects and additional 36 open-source projects
from GitHub (50 projects in total). From the results, PTP correctly
predicts the optimal technique for 46 (out of 50) projects, indicating
extremely high accuracy of 92%. In fact, PTP can also be viewed as a
new prioritization technique, which outperforms the existing cost-
unaware, cost-aware, and cost-only techniques to a large extent,
e.g., 43.16% to 94.92% faster in detecting the �rst regression fault.

In addition, PTP has been integrated into the practical testing
infrastructure of Baidu, a famous search service provider with over
600Mmonthly active users. In this paper, we report all the results of
PTP on the projects of Baidu collected until Feb. 2018, including 11
industrial subjects with 499 real regression faults. The results show
that PTP correctly predicts the optimal prioritization technique for
9 of 11 subjects, a high accuracy of 81.82%. Same to the �ndings
on open-source projects, PTP also outperforms the existing cost-
unaware, cost-aware, and cost-only techniques signi�cantly, e.g.,
16.18% to 83.79% faster in detecting the �rst real regression fault,

further demonstrating PTP’s e�ectiveness in practice. In this indus-
try application, we use the model trained based on the data of the
50 open-source projects to predict the optimal prioritization tech-
nique for industrial subjects directly, indicating that PTP provides
a generally usable model for its practical usage. In particular, PTP
received positive feedbacks from the testing team of this company,
e.g., saving beyond 2X testing costs with negligible overheads.

This paper investigates which prioritization technique should
be applied to a given project in practice through an empirical study
and a learning-based approach, and has the following contributions:
• Empirical Study. An empirical study comparing various test
prioritization techniques in terms of actual regression testing
time, which provides a series of practical guidelines to advance
test prioritization.
• Practical Approach. A machine-learning based approach that
predicts which test prioritization technique is optimal in practice
for a given project based on its distribution of test coverage,
testing time, and coverage per unit time.
• E�ectiveness Evaluation. Experimental results on 50 open-
source projects demonstrating that the proposed approach out-
performs state-of-the-art test prioritization techniques by up to
94.92% in detecting the �rst regression fault.
• Industry Application. Integration of PTP in the industrial test-
ing infrastructure, achieving up to 83.79% faster detection of the
�rst regression fault compared with state-of-the-art techniques
on 11 industrial subjects with 499 real regression faults.

2 STUDY ON OPTIMAL TEST
PRIORITIZATION

To learn which technique performs optimal in terms of practical
e�ectiveness, we perform an empirical study in this section.
2.1 Study Design
2.1.1 Subjects. In this work, we used 50 open-source projects from
GitHub, totaling 1,548,339 lines of source code and 8,879.295 sec-
onds of testing time. Note that we used 14 projects in this study,
and used all the projects in the study evaluating our learning-based
approach PTP (presented in Section 3). For the 14 projects used
in this study, 7 projects are randomly selected from prior prioriti-
zation work [58, 59]. Besides, we collected another 7 open-source
projects from GitHub, each of which has at least 7 minutes testing
time, including Camel-core [1], Chukwa [2], Commons-Pool [4],
HBase [6], MapDB [7], OpenTripPlanner [8], and PHP [9], which
have been used in other testing/debugging topics [27, 39, 52, 53, 79].
Table 1 presents the basic information of all the 50 subjects. As the
execution time of a test may vary slightly in di�erent executions,
we ran each test 10 times and used the average execution time. Our
study is conducted on a workstation with eight-core Intel Xeon
E5620 CPU(2.4GHz), 24G memory, and Ubuntu 12.04.5.
2.1.2 Faults. As the existing studies [14, 51] have demonstrated
mutation faults to be suitable for software testing experimentation,
same as prior work [24–26, 32, 80], we used mutation faults in our
study since it is quite challenging to �nd a large number of real
regression faults [58]. Following prior work [58, 59], for each subject
we �rst generated all mutants (i.e., mutation faults) and randomly
selected 500 mutation faults, each of which can be detected by at
least one test. Then, we constructed 100 mutation groups each of

657

Optimizing Test Prioritization via Test Distribution Analysis ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 1: Open-source subjects from GitHub
ID Subjects SLOC TLOC #Test Time (s)
1 assertj-core 13,361 53,059 2,470 65.378
2 asterisk-java 30,495 4,263 217 15.078
3 Camel-Core 120,248 134,036 5,630 1,562.098
4 Chukwa 32,654 8,051 131 1,042.183
5 Commons-Pool 5,206 8,232 272 421.401
6 gson-�re 895 726 36 4.023
7 HBase 66,630 17,385 756 1,474.309
8 jasmine-maven-plugin 1,671 1,931 102 54.156
9 java-apns 1,503 1,724 87 2.253
10 LastCalc 4,522 581 32 14.332
11 MapDB 11,871 36,368 4,132 1,048.109
12 OpenTripPlanner 64,718 14,207 379 637.012
13 PHP 755,522 21,983 9,691 902.275
14 vraptor-archive 16,910 16,213 1,130 79.798
15 blue�ood 19,517 15,774 961 147.577
16 cloudhopper-smpp 7,081 5,254 193 6.390
17 commons-dbcp 11,592 8,752 560 83.249
18 commons-email 2,734 3,849 174 5.792
19 commons-math 86,748 90,798 5,082 123.219
20 commons-io 9,980 19,189 1,081 137.940
21 cucumber-reporting 2,245 1,255 124 2.641
22 ddd-cqrs-sample 3,494 1,008 24 2.485
23 dictomaton 2,997 1,102 53 11.969
24 DotCi 10,038 2,714 190 18.232
25 ews-java-api 45,313 1,328 99 4.700
26 exp4j 1,086 3,531 284 8.959
27 gdx-artemis 1,851 1,492 35 2.465
28 geo 764 931 92 6.769
29 geohash-java 920 928 56 5.283
30 hivemall 28,569 3,975 150 222.805
31 HTTP-Proxy-Servlet 493 410 24 2.686
32 jackson-core 18,715 9,880 346 10.724
33 jackson-datatype-guava 2,217 1,035 73 5.887
34 jopt-simple 1,924 5,903 727 5.110
35 joss 7,972 6,029 531 16.061
36 jsprit 23,073 18,373 1,250 106.348
37 la4j 7,086 4,050 625 19.019
38 lambdaj 3,634 4,914 265 3.562
39 languagetool 47,589 20,778 719 264.476
40 metrics-core 2,835 2,194 150 2.041
41 raml-java-parser 8,696 3,005 198 4.540
42 redline-smalltalk 5,648 480 43 4.356
43 RoaringBitmap 17,807 21,494 1,148 171.098
44 rome 11,647 2,705 475 7.422
45 scribe-java 2,808 2,536 99 1.121
46 spring-data-solr 8,252 9,329 636 8.441
47 spring-retry 2,729 3,410 186 6.651
48 stream-lib 4,835 3,806 141 116.094
49 tamper 4,330 2,768 62 2.704
50 webbit 4,914 2,442 131 8.074

Total 1,548,339 606,180 42,052 8,879.295
* Columns 3-6 present the lines of source code, lines of test code, number of tests, and
the testing time (in seconds) (i.e., the time spent on executing the whole test suite).

which contains 5 randomly selected mutation faults. That is, we
created 100 faulty versions for each subject (each version contains
5 mutation faults). If the total number of mutation faults is less than
500, the number of mutant groups is less than 100. Following prior
work [71, 83], we used PIT [10, 29] and MutGen [15] to generate
mutation faults for Java and C projects respectively.
2.1.3 Studied Test Prioritization Techniques. Considering the exclu-
sion/inclusion of testing costs, we classify the existing prioritization
techniques into two types, cost-unaware and cost-aware techniques.
Besides, we implemented a cost-only technique, which prioritizes
tests only based on their costs. That is, we implemented three types
of prioritization techniques (abbreviated as Unaware, Aware, and
Only in the �gures and tables) in total. As the mostly studied test-
ing costs are time spent on running each test (abbreviated as testing
time) [35, 61], in this paper we use testing time to represent testing
costs.

•Cost-unaware Test Prioritization refers to the prioritization
techniques without balancing testing time and other factors (e.g.,
test coverage) in prioritization, including the following techniques.

Total and Additional Prioritization are both greedy algorithms [55,
80]. The total technique prioritizes tests based on the descending
order of the number of program elements (e.g., statements) cov-
ered by the tests, whereas the additional technique prioritizes tests
based on the number of program elements that are uncovered by
already selected tests but covered by these unselected tests. Al-
though conceptually simple, the additional technique has been
widely recognized as a state-of-the-art technique [55, 58, 59, 80].

Search-based Prioritization regards all the permutations of a test
suite as candidate solutions and uses some heuristics to guide the
process of searching for a better execution ordering of tests. As
the genetic algorithm is evaluated to be e�ective in test prioriti-
zation [55], we use it as the representative in search-based prior-
itization. It �rst randomly generates a set of permutations, and
then forms the next generation through crossover and mutation
operations. For crossover operation, each pair of permutations
in the population is regarded as parent permutations to generate
two o�spring permutations through crossover on a random po-
sition. For mutation operation, it randomly selects two tests and
exchanges their positions for each o�spring permutation. Same
as prior work [58], for the genetic algorithm we set the size of
population to be 100, the number of generations to be 300, and the
probabilities for crossover and mutation to be 0.8 and 0.1.

Adaptive Random Prioritization is proposed to prioritize tests
based on their diversity [50]. It de�nes a test set distance to deter-
mine which test is selected next during prioritization. Here we use
the test set distance that is de�ned to select a test that has the largest
minimum distance with the already selected tests as the represen-
tative, since it is evaluated to be more e�ective and e�cient among
all the proposed test set distances [50].

We abbreviate the four cost-unaware techniques, the total, ad-
ditional, search-based, and adaptive random prioritization, as Tot,
Add, Sea, and ARP in the �gures and tables.
•Cost-aware Test Prioritization balances testing time and

other factors in test prioritization. In this study, we use cost-cognizant
additional prioritization [35, 61], which is a typical cost-aware tech-
nique. It is �rstly proposed to leverage testing time and fault severi-
ties in test prioritization [61]. However, as fault severities are rarely
available in practice, Epitropakis et al. [35] adapted this technique
by ignoring fault severities. Although Epitropakis et al. [35] pro-
posed another cost-aware technique, in our paper we used only
the adapted cost-cognizant additional technique because another
technique requires the fault history, which is hard to collect in prac-
tice, and both techniques are shown to represent state-of-the-art
cost-aware prioritization in terms of APFDc [35]. More speci�cally,
this (adapted) cost-cognizant additional technique prioritizes tests
based on the number of program elements uncovered by already
selected tests but covered by these unselected tests, per unit time.
•Cost-only Test Prioritization schedules the execution order

of tests based on testing time alone, ignoring other factors (in-
cluding test coverage). More speci�cally, the cost-only technique
prioritizes tests based on the ascending order of the execution time
of each test. In this paper, this technique is treated as the baseline.

658

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, L. Zhang

Table 2: Test prioritization comparison in terms of APFD

ID
Statement Method

Unaware Aware Only Unaware Aware OnlyTot Add Sea ARP Tot Add Sea ARP
1 0.791 0.850 0.728 0.763 0.839 0.447 0.755 0.809 0.732 0.739 0.803 0.447
2 0.587 0.862 0.832 0.734 0.780 0.519 0.679 0.804 0.782 0.743 0.741 0.519
3 0.788 0.951 0.869 0.874 0.905 0.614 0.788 0.931 0.874 0.869 0.900 0.614
4 0.574 0.750 0.717 0.685 0.701 0.521 0.545 0.695 0.712 0.670 0.675 0.521
5 0.592 0.823 0.795 0.748 0.747 0.536 0.595 0.808 0.798 0.743 0.767 0.536
6 0.751 0.838 0.833 0.769 0.793 0.492 0.742 0.772 0.781 0.745 0.724 0.492
7 0.705 0.878 0.795 0.707 0.767 0.541 0.687 0.868 0.766 0.701 0.765 0.541
8 0.683 0.812 0.805 0.748 0.813 0.578 0.656 0.782 0.776 0.726 0.780 0.578
9 0.716 0.853 0.855 0.776 0.793 0.651 0.696 0.820 0.809 0.780 0.776 0.651
10 0.782 0.800 0.795 0.744 0.674 0.559 0.757 0.765 0.740 0.744 0.648 0.559
11 0.691 0.953 0.843 0.871 0.894 0.686 0.667 0.880 0.820 0.887 0.849 0.686
12 0.886 0.956 0.928 0.828 0.773 0.394 0.880 0.952 0.933 0.815 0.790 0.394
13 0.254 0.910 0.431 0.957 0.704 0.147 0.251 0.838 0.478 0.946 0.702 0.147
14 0.698 0.853 0.819 0.765 0.838 0.555 0.711 0.848 0.806 0.773 0.834 0.555
* Each row presents the average APFD values of all mutation groups for each subject and the cells marked
with the shading represent the highest APFD values among all the studied techniques on each subject.

2.1.4 Independent and Dependent Variables. In our study, we used
two widely-used coverage criteria (i.e. statement coverage and
method coverage) in test prioritization. We used Clover [3] and
Gcov [5] to collect test coverage (i.e., statement/method coverage)
for Java and C projects respectively. To measure the e�ectiveness
of prioritization techniques, we used both APFD and APFDc . The
formula (APFD = 1 � T F1+T F2+...+T Fm

n⇤m + 1
2n) presents the APFD

value calculation for a project with n tests andm faults. Note that
TFi is the ranking of the �rst test in the prioritized test suite that
detects the ith fault. APFDc is extended from APFD by considering
both fault severities and test execution cost [33]. As it is hard to
acquire the fault severities for each project in practice, following
the prior work [35], we simplify APFDc by regarding all the faults

have the same severity (shown in APFDc =
Pm
i=1 (
Pn
j=T Fi

tj� 1
2 tT Fi)Pn

j=1 tj ⇤m
,

where tj represents the execution time of the jth test).
2.2 Results and Analysis
2.2.1 �antitative Analysis. In this section, we quantitatively eval-
uated the studied test prioritization techniques in terms of both
APFD and APFDc .
Table 3: ANOVA analysis and Tukey’s HSD test of test pri-
oritization techniques in terms of APFD
ID

Statement Method
Unaware Aware Only Unaware Aware OnlyTot Add Sea ARP Tot Add Sea ARP

1 b a c bc a d b a b b a c
2 d a a c b e c a ab b b d
3 c a b b b d c a b b ab d
4 c a ab b b d b a a a a b
5 c a a b b d c a a b ab d
6 c a a bc b d ab a a ab b c
7 c a b c b d c a b c b d
8 c a a b a d c a a b a d
9 c a a b b d b a a a a b
10 ab a a b c d a a a a b c
11 d a c bc b d c a b a ab c
12 b a a c d e b a a c c d
13 e b d a c f e b d a c f
14 c a a b a d c a ab b a d

* a means the group with signi�cantly best e�ectiveness.
APFDResults. Table 2 shows that the comparison results of priori-
tization techniques in terms of APFD. From this table, cost-unaware
prioritization performs the best in terms of APFD for almost all
of subjects and both coverage criteria. Moreover, the additional
technique outperforms the other three cost-unaware techniques in
most cases, which is consistent with prior studies [55, 58].

To investigate whether these techniques have signi�cant dif-
ferences in terms of APFD, we performed one-way ANOVA analy-
sis [76] at the signi�cance level of 0.05. In addition, we performed
Tukey HSD post-hoc test to rank the e�ectiveness of these tech-
niques as di�erent groups. Table 3 shows the analysis results. All

Table 4: Test prioritization comparison in terms of APFDc

ID
Statement Method

Unaware Aware Only Unaware Aware OnlyTot Add Sea ARP Tot Add Sea ARP
1 0.786 0.842 0.724 0.760 0.837 0.472 0.753 0.802 0.728 0.736 0.800 0.472
2 0.318 0.738 0.686 0.771 0.971 0.981 0.136 0.648 0.585 0.811 0.878 0.981
3 0.667 0.922 0.859 0.890 0.971 0.961 0.668 0.906 0.873 0.880 0.956 0.961
4 0.272 0.594 0.553 0.744 0.909 0.908 0.257 0.521 0.613 0.580 0.865 0.908
5 0.330 0.532 0.473 0.807 0.904 0.966 0.368 0.752 0.853 0.809 0.888 0.966
6 0.540 0.550 0.502 0.579 0.928 0.903 0.529 0.532 0.458 0.561 0.806 0.903
7 0.493 0.826 0.665 0.710 0.966 0.960 0.504 0.801 0.752 0.757 0.960 0.960
8 0.677 0.799 0.802 0.737 0.818 0.606 0.650 0.767 0.768 0.714 0.781 0.606
9 0.293 0.576 0.598 0.830 0.966 0.936 0.273 0.550 0.538 0.803 0.953 0.936
10 0.835 0.880 0.886 0.696 0.995 0.995 0.837 0.969 0.881 0.525 0.989 0.995
11 0.315 0.428 0.840 0.732 0.805 0.981 0.374 0.487 0.706 0.609 0.833 0.981
12 0.624 0.920 0.888 0.873 0.973 0.977 0.619 0.919 0.883 0.788 0.977 0.977
13 0.406 0.897 0.418 0.920 0.778 0.343 0.379 0.771 0.479 0.875 0.695 0.343
14 0.812 0.860 0.919 0.584 0.953 0.897 0.817 0.909 0.895 0.704 0.954 0.897

Table 5: ANOVA analysis and Tukey’s HSD test of test pri-
oritization techniques in terms of APFDc
ID

Statement Method
Unaware Aware Only Unaware Aware OnlyTot Add Sea ARP Tot Add Sea ARP

1 b a c bc a d b a b b a c
2 d b c b a a f d e c b a
3 d b c bc a a c b b b a a
4 d c c b a a d c b b a a
5 f d e c b a e d bc c b a
6 bc bc c b a a c c d c b a
7 e b d c a a d b c c a a
8 c a a b a d c a a b a c
9 d c c b a a d c c b a a
10 c bc b d a a b a b c a a
11 e d b c b a f e c d b a
12 d b bc c a a e b c d a a
13 c a c a b d e b d a c f
14 d c ab e a bc c b b d a b

p-values in the one-way ANOVA analysis are much less than 0.05,
which means that these techniques have signi�cant di�erences on
each subject. On the whole, at least one cost-unaware technique
signi�cantly performs better than cost-aware prioritization in most
cases. Moreover, cost-unaware prioritization always signi�cantly
outperforms cost-only prioritization. That is, cost-unaware test pri-
oritization is the most e�ective in terms of APFD. Among the four
cost-unaware techniques, consistent with prior work [54, 58, 59, 80],
the total technique performs the worst in most cases, while the
additional technique performs the best in most cases.
APFDc Results.We compared these techniques in terms of APFDc ,
whose results are shown in Table 4. The distribution of shadings

in this table is totally di�erent from that in Table 2. From
Table 4, each of the three types of test prioritization can perform
the best in some cases, even the minimalist cost-only technique
performs rather well on some subjects while other techniques do
not perform well. For example, when using method coverage, cost-
unaware, cost-aware, and cost-only test prioritization performs the
best on 2/5/7 subjects respectively. Among the four cost-unaware
techniques, the additional technique does not have obvious advan-
tages compared with the others, but the ARP technique is competi-
tive with the additional technique in terms of APFDc . We suspect
the reason to be that all the techniques except ARP tend to execute
earlier the tests with higher coverage (which usually cost more
time), leading to delayed fault detection in terms of APFDc .

To con�rm our �ndings, we also performed one-way ANOVA
analysis and Tukey HSD post-hoc test, whose results are shown in
Table 5. All p-values are much less than 0.05, indicating these tech-
niques also have signi�cant di�erences in terms of APFDc on each
subject. However, di�erent from the APFD results in Table 3, there
is not any type of test prioritization that clearly outperforms the
others on the whole. Moreover, among the four cost-unaware tech-
niques, no technique dominantly performs better than the others.

659

Optimizing Test Prioritization via Test Distribution Analysis ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Overall, we get the following �ndings from this study:

The cost-cognizant APFDc measurement has di�erent trends com-
pared with the widely-used APFD, indicating that APFDc instead
of APFD should be used in test prioritization research.

No type of test prioritization always performs better than the oth-
ers in terms of APFDc . Surprisingly, even the cost-only technique
can outperform other techniques in some cases.

2.2.2 �alitative Analysis. In this section, we qualitatively ana-
lyzed in-depth reasons for prioritization e�ectiveness. Since dif-
ferent types of techniques tend to have di�erent performance for
di�erent subjects, we suspect one major di�erence among the three
types of techniques, the prioritization criteria (i.e., test coverage,
testing time, and coverage per unit time), may impact prioritization
e�ectiveness. Therefore, we analyzed the distribution of test cover-
age, testing time, and coverage per unit time. Here we analyzed the
test distribution for six representative subjects because the others
have similar conclusions with at least one of these subjects, shown
by Figure 1. We used statement coverage as the representative. The
x-axis represents the percentage of tests, where we rank the tests
based on the ascending order of the values of testing time, test
coverage, and coverage per unit time, respectively. The y-axis rep-
resents the logarithm of testing time, test coverage, or coverage per
unit time. We deal with the exponent by transforming them to be
larger than one to make the logarithm values always positive.

Based on Table 4, the cost-only technique performs optimal for
Commons-Pool (ID is 5) and LastCalc (ID is 10), the cost-unaware
technique performs optimal for assertj-core (ID is 1), and PHP (ID
is 13), and the cost-aware technique performs optimal for gson-
�re (ID is 6) and java-apns (ID is 9). From Figure 1, the subjects
with the same conclusions tend to have similar distribution of test
coverage, testing time, and coverage per unit time, which con�rms
our hypothesis. For example, for assertj-core and PHP, the testing
time of most tests is quite close and the testing time of only a
small number of tests is largely di�erent from others, and thus the
cost-only technique performs the worst. For Commons-Pool and
LastCalc, the distribution of testing time is more uneven than that
of test coverage and coverage per unit time, and thus the advantage
of the cost-only technique becomes more distinct. That is, these
distribution patternsmake some technique perform better or worse.

The distribution of test coverage, testing time, and coverage per
unit time has important impacts on the determination of which
prioritization technique (the cost-unaware, cost-aware, and cost-
only techniques) should be applied to a speci�c project in practice.

3 PREDICTIVE TEST PRIORITIZATION
Based on the above �ndings, projects with similar distribution
of test coverage, testing time, and coverage per unit time tend
to have the same optimal prioritization technique. That is, based
on the distribution of existing projects, it is possible to build a
predictive model to predict the optimal prioritization technique
for a new project in order to achieve the fastest fault detection in
practice. Based on this insight, we propose the �rst Predictive Test
Prioritization approach, abbreviated as PTP, which predicts the

optimal prioritization technique for a speci�c project in advance
via machine learning (described in Section 3.1), and then evaluate
the e�ectiveness of PTP (described in Section 3.2 and Section 3.3).

3.1 PTP Approach
Figure 2 shows the overview of PTP. In general, PTP builds a predic-
tive model to predict the optimal prioritization technique for any
given project in practice based on various test distribution features,
such as the distribution of test coverage, testing time, and coverage
per unit time. In the training process, PTP collects the test dis-
tribution features and label information (e.g., which prioritization
technique performs optimal) for each training project, and performs
feature normalization and over-sampling to build the predictive
model. Then, given any new project, PTP can predict its optimal
test prioritization technique based on its test distribution features.
Note that it is impossible to collect the test distribution features
without running the project. Therefore, following all the existing
work in test prioritization [59, 80], PTP uses the test distribution
information of the previous version instead. That is, PTP applies the
predictive model on the speci�c project by using the distribution
information of a previous version. We next describe the details for
building the PTP predictive model:
3.1.1 Feature Collection. Since the qualitative analysis in Section 2.2.2
shows that the optimal prioritization technique for a speci�c project
is related to its distribution of test coverage, testing time, and cov-
erage per unit time, PTP regards these information as the features
of a predictive model. That is, for each project with a test suite, we
extract the three group of features: (1) the number of program ele-
ments covered by each test, (2) the testing time of each test, and (3)
the number of program elements covered by each test per unit time.
Although coverage per unit time can be calculated based on test
coverage and testing time, we still use its distribution information
as one type of features, since it can facilitate the machine-learning
process, and the three groups of features directly map to the three
types of prioritization techniques. For each group of features for
an instance (i.e., a project with a test suite), PTP ranks them based
on the ascending order of their values. Figure 3 shows an example
of extracting features for an instance using a project with 3 tests
(t1, t2, t3). We �rst collect test coverage (C), testing time (T), and
coverage per unit time (C/T) for each test shown in Figure 3(a),
and then rank the values of C , T , and C/T of all tests in ascending
order respectively shown in Figure 3(b). Finally, the features of this
instance are shown in Figure 3(c). Since di�erent projects tend to
have di�erent number of tests that cause the unaligned issue of
features, PTP applies zero padding for test coverage, testing time,
and coverage per unit time respectively, to obtain the same number
of features. Another bene�t of zero padding is that such features
also consider the impacts of the number of tests on test prioritiza-
tion, since the number of tests (i.e., test-suite size) may also be an
important factor for test distributions.
3.1.2 Instance Labeling. The label for each training instance of PTP
is which prioritization technique performs optimal for a project.
We use the APFDc as the measurement of prioritization techniques
since it is a more practical measurement than APFD, and compare
three types of techniques including the cost-unaware, cost-aware,
and cost-only techniques. Here we use the additional technique as
the representative of cost-unaware techniques due to the following

660

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, L. Zhang

4

8

12

16

0.00 0.25 0.50 0.75 1.00
Commons−Pool

lo
g(
Ti
m
e*
10
00
00
+1
)

5

10

0.00 0.25 0.50 0.75 1.00
LastCalc

lo
g(
Ti
m
e*
10
00
00
+1
)

8

9

10

0.00 0.25 0.50 0.75 1.00
assertj−core

lo
g(
Ti
m
e*
10
00
00
+1
)

8

10

12

14

16

0.00 0.25 0.50 0.75 1.00
PHP

lo
g(
Ti
m
e*
10
00
00
+1
)

4

6

8

0.00 0.25 0.50 0.75 1.00
gson−fire

lo
g(
Ti
m
e*
10
00
00
+1
)

6

8

10

0.00 0.25 0.50 0.75 1.00
java−apns

lo
g(
Ti
m
e*
10
00
00
+1
)

(a) Testing time

0

2

4

6

0.00 0.25 0.50 0.75 1.00
Commons−Pool

lo
g(
Co
v+
1)

3

4

5

6

7

8

0.00 0.25 0.50 0.75 1.00
LastCalc

lo
g(
Co
v+
1)

3

4

5

6

0.00 0.25 0.50 0.75 1.00
assertj−core

lo
g(
Co
v+
1)

4

5

6

7

8

9

0.00 0.25 0.50 0.75 1.00
PHP

lo
g(
Co
v+
1)

3.0

3.5

4.0

4.5

5.0

5.5

0.00 0.25 0.50 0.75 1.00
gson−fire

lo
g(
Co
v+
1)

2

3

4

5

6

0.00 0.25 0.50 0.75 1.00
java−apns

lo
g(
Co
v+
1)

(b) Test coverage

0

5

10

15

0.00 0.25 0.50 0.75 1.00
Commons−Pool

lo
g(
Co
vP
er
Ti
m
e*
10
+1
)

6

9

12

15

0.00 0.25 0.50 0.75 1.00
LastCalc

lo
g(
Co
vP
er
Ti
m
e*
10
+1
)

8

9

10

11

0.00 0.25 0.50 0.75 1.00
assertj−core

lo
g(
Co
vP
er
Ti
m
e*
10
+1
)

5.0

7.5

10.0

12.5

15.0

0.00 0.25 0.50 0.75 1.00
PHP

lo
g(
Co
vP
er
Ti
m
e*
10
+1
)

10

11

12

13

14

15

0.00 0.25 0.50 0.75 1.00
gson−fire

lo
g(
Co
vP
er
Ti
m
e*
10
+1
)

8

10

12

0.00 0.25 0.50 0.75 1.00
java−apns

lo
g(
Co
vP
er
Ti
m
e*
10
+1
)

(c) Coverage per unit time
Figure 1: Distribution of testing time, test coverage, and coverage per unit time

Training
Data

Feature
Collection Normalization

Instance
Labeling

Training Set

Model Training

Testing
Data Feature

Collection
Optimal
Test
Prioritization

Normalization

Over-sampling

Figure 2: Overview of PTP

��� ��� ���

��� ��� ���

��� ��� ���

t1 t2 t3

C
T

C/T

���� ���� ���� ���� ���� ���� ���� ���� ����

f1 f2 f3 f4 f5 f6 f7 f8 f9

(a) Collected data (b) Ranking (c) Features of an instance
Figure 3: An example of feature collection

two reasons – (1) the cost-aware technique studied in this paper is
adapted from the traditional additional technique by Epitropakis et
al. [35], and (2) when cost-unaware test prioritization outperforms
cost-aware test prioritization and cost-only test prioritization, at
least the additional technique will outperform them based on the
APFDc results in Section 2.2.1. Therefore, when collecting the label
for an instance, PTP compares the average APFDc values on all
mutation groups for the three techniques, and treats the technique
with the highest average APFDc as the label.
3.1.3 Predictive Model Training. Since di�erent training instances
tend to have di�erent value ranges for test coverage, testing time,
and coverage per unit time, PTP normalizes the three types of fea-
ture values for each training instance into the range [0,1] using
min-max normalization [49], respectively. That is, PTP adjusts val-
ues measured on di�erent scales into a common scale. For example,
supposed the set of values for the coverage feature extracted from
a training instance is denoted as x = {x(1) , x(2) , . . . , x(n) }, and the
the normalized instance is denoted as x (i.e., value of x(i) after nor-
malization is denoted as x(i)), where 1 i n. Formula 1 shows
the min-max normalization on x(i) . Besides, PTP uses the over-
sampling strategy (i.e., resampling the minority class) to deal with
the imbalanced data problem following the existing work [17, 43].

x(i) =
x(i) �min ({x(k) |1 k n })

max ({x(k) |1 k n }) �min ({x(k) |1 k n })
(1)

Based on the set of processed training data, PTP trains a predic-
tive model via machine learning, which is used to predict which
technique performs optimal for a speci�c project in practice. The
test coverage, testing time, and coverage per unit time of each test
are regarded as features, but such basic features are hard to predict
the optimal prioritization technique. Based on the observations
in the study, the high-level distribution patterns constructed from
these basic features are more directly related to the optimal pri-
oritization. The recently proposed XGBoost algorithm [28] is an
optimized distributed gradient boosting learning algorithm that
can e�ectively learn high-level features constructed from basic
features using tree ensemble models, which is suitable to our prob-
lem. Therefore, in PTP we adopt it to learn the high-level patterns.
Also, XGBoost supports to automatically do parallel computation
to improve e�ciency. Note that we also investigate the impact of
di�erent machine learning algorithms in Section 3.3.

3.2 PTP Evaluation Design
We conducted an extensive study to evaluate PTP. In particular,
this study shares the similar experimental setup as Section 2.1, and
we present the di�erences between them as follows.
3.2.1 Subjects. To make results more generalizable, in this study
we scale up our subjects to 50 open-source projects from GitHub,
shown in Table 1. Despite that, we just have 50 original test suites
for the 50 subjects, the number of prioritization runs is also 50,
which is small in number for machine learning. To possess enough
instances for PTP, we constructed 50 test suites for each subject by
randomly selecting a subset of tests from its original test suite. Each
constructed test suite is used as an instance, where test prioritization
applies. In this way, we constructed 2,500 such instances in total.
Besides, each original test suite can also be used as an instance, and
thus we have 2,550 instances in total. As each subject has about
100 mutant groups, for each instance we calculated the average
APFDc values of all the mutant groups as the measurement of the
corresponding technique, and labeled the prioritization technique
with the largest average APFDc values. Following the existing
work on machine learning [16, 20], we used the leave-one-out cross-
validation to evaluate PTP. That is, for each subject, we used all the
instances from remaining subjects as the training data to predict

661

Optimizing Test Prioritization via Test Distribution Analysis ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

the optimal prioritization technique for the target subject with
its original test suite.
3.2.2 Measurements. From our industry partners, they tend to care
di�erent metrics based on di�erent requirements. For example, they
care the time spent on detecting the �rst regression fault for starting
debugging and releasing resources earlier. To su�ciently evaluate
the practical e�ectiveness of PTP, besides APFDc , we used other
three practical time-based measurements (in milliseconds), whose
importance is con�rmed by our industry partners:
• FT, the time spent on detecting the �rst regression fault [48].
• LT, the time spent on detecting the last regression fault.
• AT, the average time spent on detecting all regression faults.
Even though both AT and APFDc measure the e�ectiveness of
test prioritization by considering all detected faults, they have
di�erent computations and can have di�erent results.

3.2.3 Implementation. Weused the XGBoost approach implemented
by the XGBoost python package [12] to build the predictive model,
choosing the softmax objective due to the multiclass classi�cation
problem. Based on a preliminary study that we conducted on a small
dataset, we set eta = 0.1, max_depth = 5, silent = 1, and num_round
= 150, and other parameters to be default values. We investigate the
impact of parameters in Section 3.3. In this study, we used statement
coverage in PTP since it is usually more e�ective than others [58],
which is also con�rmed by our study in Section 2.
3.3 Results and Analysis
Overall E�ectiveness. Based on experimental results, PTP cor-
rectly predicts the optimal technique for 46 of 50 subjects (except
assertj-core, asterisk-jave, geohash-java, and spring-data-solr), indi-
cating extremely high accuracy, i.e., 92%.

Table 6 shows the comparison results of PTP with the other
three techniques. Row “Avg” presents the average e�ectiveness
of all subjects, and Row “Imp” presents the average improvement
of PTP compared with the other techniques. From the last two
rows, PTP outperforms all the three techniques in terms of all time-
based measurements. Surprisingly, the improved rate of PTP for FT
ranges from 43.16% to 94.92% compared with all existing state-of-
the-art techniques. In practice, FT is usually the most important
measurement in industry because developers tend to start debug-
ging immediately after the �rst test failure. That further con�rms
the practical value of PTP. Moreover, the improved rates of PTP for
AT and LT are also high, ranging from 45.30% to 81.23% and 32.84%
to 62.59% respectively, demonstrating the practical e�ectiveness of
PTP from various angles. The improved rate of PTP for APFDc is
smaller than other measurements. The reason is that APFDc has the
value range of [0,1], making APFDc values of di�erent techniques
tend to be close.
Parameter Evaluation. We investigate the impact of main pa-
rameters in PTP, i.e., max_depth and num_round for XGBoost [28].
The former represents the maximum depth of a tree, and the lat-
ter represents the number of rounds for boosting. Figure 4 shows
the number of subjects whose optimal prioritization technique is
correctly predicted by PTP when changing each parameter alone.
From this �gure, regardless of parameter values, the number of
subjects predicted correctly is always close to the total number of
subjects (i.e., 50), demonstrating the stable e�ectiveness of PTP.

● ● ● ● ● ●

46 46 46 46 46 46

0

10

20

30

40

50

3 4 5 6 7 8

N
um

be
r o

f c
or

re
ct

 p
re

di
ct

io
n

(a) max_depth

● ● ● ● ● ●

45 45 46 46 46 46

0

10

20

30

40

50

100 200 300

N
um

be
r o

f c
or

re
ct

 p
re

di
ct

io
n

(b) num_round

Figure 4: Impact of parameters on PTP
Learning Algorithm Impacts.We investigate the impacts of ma-
chine learning algorithms. Besides XGBoost, we use one widely-
used baseline algorithm, i.e., Random Guess (RG), and another ten
typical classi�cation algorithms, including Multivariate Bernoulli
Naive Bayes (BNB) [63], Multi-Layer Perceptron (MLP) [45], Sup-
port Vector Machine (SVM) [36], Logistic Regression (LR) [36],
Ridge Regression (RR) [46], K-Nearest Neighbors (KNN) [13], Ran-
dom Forest (RF) [18], Extra-Trees (ET) [38], Linear Discriminant
Analysis (LDA) [70], andQuadratic Discriminant Analysis (QDA) [42].
In particular, we used their implementations provided by scikit-learn
package in Python [11] with their default settings.

Figure 5 shows the comparison results using di�erent machine
learning algorithms in terms of e�ectiveness, i.e., the number of
subjects predicted correctly. From this �gure, all the machine learn-
ing algorithms perform signi�cantly better than the baseline, RG,
indicating the promising direction of using machine learning to
predict the optimal test prioritization technique. Besides, XGBoost
performs better than all other machine learning algorithms, demon-
strating the power of XGBoost to predict the optimal test prioriti-
zation technique in PTP. The three tree-based algorithms XGBoost,
RF, and ET rank at top 3, because these tree-based algorithms are
ensemble learning algorithms that integrate multiple decision trees.
That indicates our features can be modeled well by tree structures.

46

28

44

34

43

31 33

43 45

33 33

18

0

10

20

30

40

50

XGBoost BNB ET KNN LDA LR MLP QDA RF RR SVM RG

N
um

be
r o

f c
or

re
ct

 p
re

di
ct

io
n

Figure 5: E�ectiveness of machine learning algorithms

Table 7 shows the comparison results using di�erent learning al-
gorithms in terms of e�ciency (milliseconds), including the average
time spent on o�line training a predictive model and the average
time spent on online prediction for each subject. We do not show
the cost of RandomGuess because this algorithm has almost no cost.
From this table, the o�ine training time of XGBoost is larger than
many other learning algorithms, but it is still acceptable, i.e., about
4.67 minutes. Moreover, the training process is conducted o�ine,
and thus its cost can be ignored. On the other hand, for all the ma-
chine learning algorithms, their online predicting time is negligible,
i.e., in milliseconds, demonstrating the practical feasibility of PTP.
Table 7: E�ciency of machine learning algorithms (ms)

Stage XGBoost BNB ET KNN LDA LR MLP QDA RF RR SVM
train 279220 936 950 4624 646777 50056 109927 49154 487 4860 818916
predict 10 7 1 51 0 11 12 187 1 1 10

Overall, learning algorithms indeed have impacts on PTP, mostly
demonstrated by its e�ectiveness. The tree-based learning algo-
rithms, especially XGBoost, perform better in terms of e�ectiveness.
Regarding to practical usage, XGBoost is a better choice for PTP.

662

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, L. Zhang

Table 6: E�ectiveness of PTP compared with the other three techniques on open-source subjects
ID APFDc FT (ms) LT (ms) AT (ms)

PTP Unaware Aware Only PTP Unaware Aware Only PTP Unaware Aware Only PTP Unaware Aware Only
1 0.837 0.842 0.837 0.472 793 1012 793 11447 28390 28136 28390 57304 10575 10332 10575 34303
2 0.971 0.738 0.971 0.981 2 644 2 4 567 1906 567 347 137 1201 137 92
3 0.971 0.922 0.971 0.961 77 5864 77 872 197672 357196 197672 221707 42782 113788 42782 56318
4 0.909 0.594 0.909 0.908 886 190869 886 1485 309992 603003 309992 296097 81470 362654 81470 82048
5 0.966 0.532 0.904 0.966 12 58025 7 12 43757 213307 114970 43757 10495 141069 29067 10495
6 0.928 0.550 0.928 0.903 1 24 1 3 34 107 34 37 12 71 12 15
7 0.966 0.826 0.966 0.960 84 10609 84 185 64481 190349 64481 68844 15212 77767 15212 17962
8 0.818 0.799 0.818 0.606 1510 1911 1510 8165 25298 26389 25298 38429 10108 11163 10108 21611
9 0.966 0.576 0.966 0.936 3 414 3 9 244 1276 244 414 70 777 70 120
10 0.995 0.880 0.995 0.995 2 77 2 2 145 3662 145 160 42 960 42 46
11 0.981 0.428 0.805 0.981 7 487332 304 7 71189 644361 507945 71189 17508 540653 162062 17508
12 0.977 0.920 0.973 0.977 50 8150 15 50 26792 78375 36960 26792 7143 25795 8657 7143
13 0.881 0.881 0.774 0.381 49417 49417 90407 186710 251953 251953 321729 752846 110497 110497 207226 561347
14 0.953 0.860 0.953 0.897 163 237 163 2452 12227 36293 12227 15277 3780 11241 3780 8230
15 0.989 0.845 0.977 0.989 17 1230 3 17 3645 29850 7903 3645 836 11710 1746 836
16 0.875 0.792 0.863 0.875 6 646 14 6 7944 9875 8347 7944 2085 3524 2293 2085
17 0.995 0.952 0.993 0.995 30 48 5 30 900 11710 2442 900 335 3500 534 335
18 0.984 0.858 0.968 0.984 10 529 2 10 1396 8497 3163 1396 359 3087 705 359
19 0.976 0.737 0.956 0.976 51 8289 14 51 8356 45228 17010 8356 2125 23130 3877 2125
20 0.988 0.814 0.977 0.988 28 3828 10 28 3881 28520 8494 3881 983 14674 1876 983
21 0.865 0.725 0.865 0.824 24 418 24 11 683 934 683 930 259 582 259 314
22 0.914 0.809 0.914 0.879 75 823 75 95 1296 2001 1296 1515 551 1154 551 708
23 0.779 0.663 0.779 0.611 35 575 35 108 5082 5489 5082 6989 1984 2862 1984 3234
24 0.974 0.607 0.910 0.974 9 10859 4 9 5746 32070 17301 5746 1310 18983 4387 1310
25 0.646 0.603 0.646 0.536 47 65 47 66 362 373 362 384 183 204 183 235
26 0.999 0.945 0.960 0.999 1 1 0 1 26 1623 1163 26 9 356 259 9
27 0.928 0.870 0.928 0.861 0 4 0 1 22 35 22 31 6 12 6 12
28 0.986 0.927 0.982 0.986 2 4 0 2 144 610 200 144 33 153 42 33
29 0.961 0.830 0.971 0.961 1 23 1 1 318 895 260 318 78 308 63 78
30 0.971 0.728 0.951 0.971 69 26116 46 69 23027 111051 45937 23027 6658 59799 11196 6658
31 0.966 0.868 0.966 0.950 6 28 6 7 555 1233 555 709 142 520 142 185
32 0.975 0.746 0.966 0.975 4 283 1 4 428 2226 623 428 110 1102 150 110
33 0.937 0.887 0.937 0.933 3 22 3 5 161 232 161 135 47 85 47 49
34 0.920 0.909 0.920 0.845 8 14 8 28 1484 1578 1484 2207 405 458 405 782
35 0.958 0.786 0.931 0.958 21 375 9 21 1931 6193 3208 1931 527 2604 842 527
36 0.996 0.039 0.870 0.996 20 105149 2 20 2249 107321 49822 2249 576 105997 14500 576
37 0.873 0.861 0.873 0.760 92 432 92 248 7357 7021 7357 12916 2450 2694 2450 4611
38 0.968 0.830 0.968 0.962 2 40 2 3 176 538 176 181 46 247 46 56
39 0.948 0.492 0.948 0.923 312 54924 312 446 55413 196480 55413 67926 14142 135151 14142 20670
40 0.862 0.656 0.862 0.836 14 51 14 56 688 1090 688 533 213 528 213 253
41 0.884 0.797 0.884 0.844 5 50 5 19 1251 1635 1251 1455 331 594 331 440
42 0.962 0.952 0.962 0.871 63 93 63 136 85 120 85 192 78 99 78 178
43 0.985 0.794 0.985 0.985 26 6642 7 26 8894 49628 9240 8894 2113 27976 2015 2113
44 0.883 0.827 0.883 0.863 7 44 7 30 1158 1247 1158 1084 344 511 344 401
45 0.893 0.747 0.893 0.820 4 49 4 17 205 315 205 295 66 156 66 109
46 0.743 0.679 0.751 0.743 19 42 5 19 1020 1085 1018 1020 348 435 337 348
47 0.963 0.795 0.935 0.963 4 137 3 4 576 2111 1022 576 166 875 281 166
48 0.984 0.677 0.956 0.984 6 26494 4 6 10388 74505 25975 10388 2221 43352 5957 2221
49 0.959 0.890 0.959 0.945 2 48 2 5 148 281 148 179 47 130 47 61
50 0.978 0.898 0.959 0.978 2 17 1 2 576 1742 1038 576 133 611 247 133

Avg 0.932 0.764 0.916 0.889 1081 21260 1902 4260 23806 63633 38019 35446 7043 37523 12876 17411
Imp – 21.99% 1.75% 4.84% – 94.92% 43.16% 74.63% – 62.59% 37.38% 32.84% – 81.23% 45.30% 59.55%

In summary, PTP e�ectively predicts the optimal test prioritiza-
tion technique, advancing the practical usage of test prioritization
to a large extent. With this approach, practitioners can always
have close-to-optimal prioritization results, signi�cantly improving
regression testing e�cacy in practice.

4 INDUSTRY APPLICATION OF PTP
Recently, PTP has been integrated into the practical testing infras-
tructure for Baidu, a famous search service provider with over 600M
monthly active users. Projects in Baidu have considerable regres-
sion testing costs due to the following reasons. First, the projects
and tests in Baidu are large-scale. Second, the regression testing
process is conducted once a change is submitted according to the
continuous integration policy of Baidu, and there is high change
frequency. For example, one project in Baidu has about 30 commits
per day. Moreover, even though this company has an abundance

of resources, the resources are still limited relative to such consid-
erable costs. Therefore, more testing optimizations are in demand.
Our PTP approach aims to achieve optimal test prioritization to
detect faults earlier, which admirably serves their needs of quicker
test feedback and less computing resource consumption, and thus
has been integrated into Baidu’s practical testing infrastructure for
faster fault detection.

PTP does achieve great e�ectiveness in the practical usage in
Baidu. Here we report all the results of PTP on the projects of Baidu
collected until Feb. 2018, including 11 industrial subjects, totaling
over 3 million of lines of source code, nearly 30K tests, and over
100 hours of testing time. For each subject, we have a set of real
regression faults on real faulty versions, to evaluate the e�ective-
ness of PTP. In particular, for these industrial subjects, we collected
the real regression faults during practical testing from Dec. 2017
to Feb. 2018, i.e., 86 faulty versions with 499 real regression faults
in total. Table 8 shows the basic information of these industrial

663

Optimizing Test Prioritization via Test Distribution Analysis ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 8: Industrial subjects from Baidu
ID SLOC #Test Time (ms) # FV #Faults
I1 >200K 2,556 30,225,482 2 10
I2 >200K 2,546 33,098,270 4 38
I3 >200K 2,550 31,032,187 5 19
I4 >500K 4,134 54,176,448 19 144
I5 >500K 4,128 50,641,444 14 46
I6 >500K 4,123 51,516,471 3 15
I7 >500K 4,137 51,674,375 5 17
I8 >500K 4,139 51,581,491 2 11
I9 >20K 281 5,887,430 21 150
I10 >20K 299 6,686,943 8 37
I11 >20K 202 2,564,670 3 12
* The last two columns present the number of faulty versions and
the number of real regression faults. Due to the policy of Baidu, we
hide project names and report the rough scale of SLOC.

subjects and faults. In particular, for each industrial subject, we
used the predictive model trained based on the data from the 50
open-source projects used in our work to predict the optimal priori-
tization technique, and then determined an execution order of tests
through the predicted optimal test prioritization. This is a practical
application scenario of learning-based techniques, i.e., leveraging
su�cient open-source data to facilitate industrial usage.

Based on the results on industrial subjects, PTP correctly predicts
the optimal prioritization technique for 9 of 11 subjects, demonstrat-
ing the accuracy of 81.82%. Table 9 shows the practical e�ectiveness
of PTP on industrial subjects. Similar to �ndings on open-source
subjects, PTP outperforms all the three techniques in terms of all
time-based measurements on industrial subjects. The improved
rates of PTP for FT range from 16.18% to 83.79% compared with the
three state-of-the-art techniques, demonstrating its practical value
in industry. Also, the improved rates of PTP for AT and LT range
from 3.22% to 36.51% and from 1.75% to 12.53%. Besides, PTP has
improvements in terms of APFDc , ranging from 1.11% to 32.10%.

Even though PTP also achieves great improvements on industrial
subjects, we �nd that the improvements are smaller than those on
open-source subjects. One possible reason is that we used mutation
faults in open-source subjects while used real faults in industrial sub-
jects. That also re�ects that test prioritization techniques perform a
bit di�erent on industrial subjects with real faults and open-source
subjects with mutation faults, indicating the necessity of using both
kinds of subjects to evaluate test prioritization techniques.

Such results indicate that PTP not only achieves signi�cant ef-
fectiveness on open-source subjects, but also performs great on
industrial subjects with real regression faults. In particular, after
applying PTP to Baidu, we received positive feedbacks from the
testing team of this company according to the practical usage:

“. . . PTP saves beyond 2X testing costs for the anonymous projects
with negligible overheads. . . . PTP has been successfully integrated
into the practical testing of the anonymous projects . . . ”

5 THREATS TO VALIDITY
The threats to external validity mainly lie in the subjects and faults.
Although these subjects may not su�ciently represent other sub-
jects, we have already used the relatively large number of subjects
(50 open-source subjects from GitHub) among existing prioriti-
zation studies. Regarding to faults used in the studies, we used
mutation faults for open-source subjects, because they are evalu-
ated to be suitable for software testing experimentation [14, 51]

and are widely used in test prioritization research [32, 57, 80]. Prior
work [65] discussed the threat from mutations, in the future we will
reduce this threat accordingly. In this work, to reduce these threats,
we also report the results of PTP on industrial subjects with real
regression faults, i.e., 11 industrial subjects with 499 real regression
faults. Here following prior work [56, 77], we regard each failure
as each fault in industrial subjects, since it is hard to distinguish
whether di�erent failures are caused by the same fault [77] and
many faulty versions in the study have only one failure.

The threats to construct validity mainly lie in the regression
scenario, instance collection, and measurement. In the studies on
open-source subjects, we regard the version without faults as the
former version and the version with faults as the current version
following test-prioritization literature [59, 80]. To reduce this threat,
our industry application of PTP uses the real regression scenario.
We do not consider test evolutions here, and in the future we will
consider it to further reduce this threat. In particular, the PTP
trained model is based on the traditional general test prioritization,
which are designed to work for a series of subsequent versions. Two
independent recent studies [44, 58] both demonstrated that software
changes do not impact the e�ectiveness of general test prioritization
much. In the evaluation of PTP, to possess enough instances, we
randomly constructed test suites, besides using the original test
suites. However, even based on the set of randomly constructed
test suites and original test suites, our study demonstrates that
PTP can predict the optimal technique for each project with the
original test suite. Considering the di�erence between constructed
test suites and original test suites, we will repeat the experiment by
using more real instances. In the evaluation of PTP, we used time-
based measurements for test prioritization because PTP can also be
viewed as a type of prioritization technique. More discussion on
their di�erence is given by Section 6. However, strictly speaking,
PTP is a prediction technique, and thus we will further measure its
e�ectiveness by using more measurements in machine learning.

6 DISCUSSION
•Practical Implications. Time plays a non-trivial role in practical
test prioritization, demonstrated from at least two aspects: prioriti-
zation algorithms and measurements. Regarding to prioritization
algorithms, our study shows that the cost-only technique performs
surprisingly well on some subjects (e.g.,MapDB). That is, consid-
ering the cost of coverage collection, the cost-only technique may
be a good candidate prioritization technique in practice. Regard-
ing to measurements, our study shows that comparison results on
APFD are much di�erent from APFDc , indicating the importance
of practical factors (e.g., testing time) in test prioritization.
•New Perspective from PTP. Our work provides a new perspec-
tive for test prioritization problem. In the past, the existing work
solves this problem mainly through proposing new prioritization
techniques, hoping they always outperform the others. However,
due to its inherent di�culties [55], it is quite hard to �gure out an
outstanding technique, which always produces the best prioritiza-
tion results. Instead, our work admits the advantages of existing
prioritization techniques, and aims at generating the optimal pri-
oritization results for each project through the selection of priori-
tization techniques. That is, PTP opens an entire new dimension,
di�erent from the current research direction of test prioritization.

664

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, L. Zhang

Table 9: E�ectiveness of PTP compared with the other three techniques on industrial subjects
ID APFDc FT (ms) LT (ms) AT (ms)

PTP Unaware Aware Only PTP Unaware Aware Only PTP Unaware Aware Only PTP Unaware Aware Only
I1 0.808 0.808 0.776 0.216 250787 250787 1293191 14322465 7560276 7560276 7369532 16382085 3798574 3798574 4423204 15457095
I2 0.705 0.676 0.705 0.726 565043 1474614 565043 4462143 11918502 12917148 11918502 9652705 6491689 7134236 6491689 6026221
I3 0.821 0.821 0.812 0.317 1240817 1240817 1368700 12457645 7950702 7950702 8496865 16427286 3741602 3741602 3927869 14284088
I4 0.680 0.658 0.680 0.561 3423653 4784899 3423653 12333858 24271737 24567782 24271737 25505772 13213454 14114248 13213454 18117446
I5 0.808 0.808 0.762 0.510 4466056 4466056 6505057 18246359 11066564 11066564 13113232 21322579 7607309 7607309 9405948 19361214
I6 0.658 0.648 0.658 0.442 2661617 3304244 2661617 18050271 21073328 21125779 21073328 29588445 13709244 14126753 13709244 22382345
I7 0.798 0.772 0.798 0.529 1749060 4398506 1749060 16541650 14262112 14233773 14262112 21330727 8158275 9194197 8158275 19014559
I8 0.564 0.368 0.564 0.912 790998 15387173 790998 2457853 29316445 33876494 29316445 5842782 17421563 25274566 17421563 3512491
I9 0.626 0.616 0.626 0.610 546745 597195 546745 747664 3274387 3302778 3274387 3264328 1826911 1879284 1826911 1908097
I10 0.737 0.724 0.737 0.626 649200 649111 649200 2047396 2644144 2734368 2644144 2777201 1663724 1743161 1663724 2364267
I11 0.642 0.622 0.642 0.492 281394 283261 281394 922338 1255995 1329314 1255995 1778476 920840 972075 920840 1301995
Avg 0.713 0.684 0.706 0.540 1511397 3348788 1803151 9326331 12235836 12787725 12454207 13988399 7141199 8144182 7378429 11248165
Imp — 4.35% 1.11% 32.10% — 54.87% 16.18% 83.79% — 4.32% 1.75% 12.53% — 12.32% 3.22% 36.51%

•Practical Usage of PTP. In the evaluation of PTP on open-source
subjects, we used the widely-used leave-one-out cross-validation
(described in Section 3.2.1), and our results demonstrate the great
e�ectiveness of PTP. Di�erently, in the industry application of
PTP, we used the model trained based on the data of the 50 open-
source projects to predict the optimal prioritization technique for
industrial subjects directly, and the results further demonstrate the
practical e�ectiveness of PTP. That indicates that PTP can provide
generally usable models for its later practical usage, demonstrating
the stability and applicability of PTP.
•Future Extensions of PTP. For predictive test prioritization,
there are a lot of future extensions. First, based on Figure 1, the
problem can be transformed to a pattern recognition problem (i.e.,
image recognition), since the similar distribution images tend to
have the same prediction conclusions. In the future, we will collect
the distribution images from Github and improve PTP by applying
learning or even deep learning techniques to these images. Second,
besides the used distributions, some other factors may also in�u-
ence prioritization technique selection, e.g., the degree of coverage
overlapping. In the future, we will leverage such information to
improve PTP. Third, PTP uses APFDc values to label instances, but
other time-based measurements like FT, LT, and AT can also be
used as labels to guide the selection, depending on developers’ spe-
ci�c requirements. In the future, we will extend PTP using various
measurements to label instances and evaluate their e�ectiveness.

7 RELATEDWORK
As our work investigates the selection of test prioritization tech-
niques through an empirical study and a novel machine-learning
based approach, we summarize the existing work into two parts,
test prioritization techniques and empirical studies.
Prioritization Techniques. Most of the existing prioritization
techniques belong to the cost-unaware techniques, e.g., the four
cost-unaware techniques studied in this paper. Besides, time-aware
test prioritization [31, 62, 73, 74, 81] also belongs to this category.
Slightly di�erent from the preceding cost-unaware techniques, time-
aware techniques focus on prioritizing tests satisfying the time
constraint. However, these techniques do not deal with the balance
between testing costs and other factors in test prioritization, and
thus do not belong to cost-aware techniques. For cost-aware tech-
niques [47, 61, 72, 82], Epitropakis et al. [35] proposed a cost-aware
multi-objective prioritization technique, and compared its perfor-
mance with the cost-cognizant additional greedy technique [61].
Chen et al. [21, 22] proposed a learning-based approach to pri-
oritizing tests for compilers based on the predicted bug-revealing
probability per unit time for each test. Busjaeger et al. [19] proposed

a learning-based prioritization technique, which prioritizes tests by
assigning each test an aggregated score through machine learning.
Di�erent from them, our work does not present a prioritization
algorithm, but aims at selecting the best-performance technique
among existing ones for a speci�c project.
Empirical Studies. Most of existing empirical studies compared
the performance among cost-unaware techniques and they usually
used the APFD measurement [30, 34, 44, 59, 67, 68]. For example,
Hao et al. [41] conducted an empirical study to compare existing
coverage-based prioritization techniques in terms of APFD and
found that the additional technique even outperforms the optimal
coverage-based prioritization technique, which performs the best
in terms of coverage (i.e., APXC) rather than fault detection (i.e.,
APFD). Besides, several empirical studies [35, 61] investigated the
performance of cost-aware techniques. In summary, the existing
empirical studies investigated only either the performance of cost-
unaware techniques or the performance of cost-aware techniques.
That is, to our best knowledge, none of the existing work compares
the performance of cost-unaware and cost-aware techniques to-
gether in terms of practical e�ectiveness, and this paper is the �rst
one to compare both cost-unaware and cost-aware techniques in
terms of actual regression testing time.

8 CONCLUSION
Despite the large body of research on test prioritization, the optimal
test prioritization technique in practice still remains unknown. To
answer it, this paper performs the �rst study to compare various
prioritization techniques in terms of both APFD and APFDc . The
study results reveal a number of practical guidelines, and show
that actually no existing technique can always perform the best.
Our quantitative and qualitative analyses further show that the
distribution of test coverage, testing time and coverage per unit time
can serve as the guidelines for selecting the optimal prioritization
technique for di�erent cases. Based on the �ndings, we design a
predictive test prioritization approach, PTP, which can predict the
optimal prioritization technique for a given project based on its
test distribution in prior versions. The experimental results show
that PTP outperforms the studied techniques signi�cantly, e.g., by
43.16% to 94.92% in detecting the �rst regression fault. Furthermore,
PTP has been integrated into the testing infrastructure of Baidu,
demonstrating 16.18% to 83.79% improvement in detecting the �rst
regression fault compared with state-of-the-art techniques (on 499
real regression faults). The data in this work (except the data on
industrial projects due to the policy of the company) are available
at our project website: https://github.com/JunjieChen/PTP.

665

Optimizing Test Prioritization via Test Distribution Analysis ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Accessed: 2018. Camel-core. http://camel.apache.org.
[2] Accessed: 2018. Chukwa. http://chukwa.apache.org.
[3] Accessed: 2018. Clover. https://www.atlassian.com/software/clover.
[4] Accessed: 2018. Commons-Pool. https://commons.apache.org/proper/

commons-pool.
[5] Accessed: 2018. Gcov. http://ltp.sourceforge.net/coverage/gcov.php.
[6] Accessed: 2018. HBase. https://hbase.apache.org.
[7] Accessed: 2018. MapDB. http://www.mapdb.org.
[8] Accessed: 2018. OpenTripPlanner. http://www.opentripplanner.org.
[9] Accessed: 2018. PHP. http://php.net.
[10] Accessed: 2018. PIT. http://pitest.org.
[11] Accessed: 2018. scikit-learn. http://scikit-learn.org/stable/.
[12] Accessed: 2018. XGBoost python package. http://xgboost.readthedocs.io/en/

latest/python/index.html.
[13] N. S. Altman. 1992. An Introduction to Kernel and Nearest-Neighbor Nonpara-

metric Regression. American Statistician 46, 3 (1992), 175–185.
[14] J. H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is Mutation an Appropriate

Tool for Testing Experiments?. In ICSE. 402–411.
[15] James H. Andrews, Lionel C. Briand, Yvan Labiche, and Akbar Siami Namin. 2006.

Using mutation analysis for assessing and comparing testing coverage criteria.
TSE 32, 8 (2006), 608âĂŞ–624.

[16] Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-to-
rank based fault localization approach using likely invariants. In ISSTA. 177–188.

[17] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. 2004. A
study of the behavior of several methods for balancing machine learning training
data. SIGKDD Explorations 6, 1 (2004), 20–29.

[18] L. Breiman. 2001. Random Forest. Machine Learning 45 (2001), 5–32.
[19] Benjamin Busjaeger and Tao Xie. 2016. Learning for test prioritization: an

industrial case study. In FSE. 975–980.
[20] Gavin C Cawley and Nicola LC Talbot. 2003. E�cient leave-one-out cross-

validation of kernel �sher discriminant classi�ers. Pattern Recognition 36, 11
(2003), 2585–2592.

[21] Junjie Chen. 2018. Learning to accelerate compiler testing. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings.
472–475.

[22] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing
Xie. 2017. Learning to Prioritize Test Programs for Compiler Testing. In ICSE.
700–711.

[23] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. Test case prioritization for compilers: A text-vector based
approach. In ICST. 266–277.

[24] Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, and Bing Xie.
2017. How do assertions impact coverage-based test-suite reduction?. In ICST.
418–423.

[25] Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, Bing Xie, and
Hong Mei. 2016. Supporting oracle construction via static analysis. In ASE.
178–189.

[26] Junjie Chen, Wenxiang Hu, Lingming Zhang, Dan Hao, Sarfraz Khurshid, and Lu
Zhang. 2018. Learning to accelerate symbolic execution via code transformation.
In ECOOP, Vol. 109. 6:1–6:27.

[27] Lingchao Chen and Lingming Zhang. 2018. Speeding up Mutation Testing via
Regression Test Selection: An Extensive Study. In ICST. 58–69.

[28] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 785–794.

[29] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: a practical mutation testing tool for Java. In ISSTA.
449–452.

[30] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. 2008. An empirical study of
the e�ect of time constraints on the cost-bene�ts of regression testing. In FSE.
71–82.

[31] Hyunsook Do, Siavash Mirarab, Ladan Tahvildari, and Gregg Rothermel. 2010.
The e�ects of time constraints on test case prioritization: A series of controlled
experiments. IEEE Transactions on Software Engineering 36, 5 (2010), 593–617.

[32] Hyunsook Do and Gregg Rothermel. 2006. On the use of mutation faults in
empirical assessments of test case prioritization techniques. TSE 32, 9 (2006),
733–752.

[33] Sebastian Elbaum, AlexeyMalishevsky, andGregg Rothermel. 2001. Incorporating
varying test costs and fault severities into test case prioritization. In ICSE. 329–
338.

[34] S. Elbaum, A. Malishevsky, and G. Rothermel. 2002. Test case prioritization: A
family of empirical studies. TSE 28, 2 (2002), 159 – 182.

[35] Michael G Epitropakis, Shin Yoo, Mark Harman, and Edmund K Burke. 2015.
Empirical evaluation of pareto e�cient multi-objective regression test case pri-
oritisation. In ISSTA. 234–245.

[36] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. 2008. LIBLINEAR: A Library for Large Linear Classi�cation. JMLR 9 (2008),

1871–1874.
[37] Qing Gao, Jun Li, Yingfei Xiong, Dan Hao, Xusheng Xiao, Kunal Taneja, Lu

Zhang, and Tao Xie. 2016. High-con�dence software evolution. Science China
Information Sciences 59, 7 (2016), 071101.

[38] Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely randomized
trees. Machine Learning 63, 1 (2006), 3–42.

[39] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical regression
test selection with dynamic �le dependencies. In ISSTA. 211–222.

[40] Dan Hao, Lu Zhang, and Hong Mei. 2016. Test-case prioritization: achievements
and challenges. FCS 10, 5 (2016), 769–777.

[41] Dan Hao, Lu Zhang, Lei Zang, Yanbo Wang, Xingxia Wu, and Tao Xie. 2016. To
Be Optimal Or Not in Test-Case Prioritization. TSE 42, 5 (2016), 490–505.

[42] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. The elements of
statistical learning. 2001. Springer 167, 1 (2001), 192–192.

[43] Haibo He and Edwardo A. Garcia. 2009. Learning from Imbalanced Data. TKDE
21, 9 (2009), 1263–1284.

[44] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Comparing white-box and black-box test prioritization. In ICSE. 523–534.

[45] Geo�rey E Hinton. 1989. Connectionist learning procedures. Arti�cial intelligence
40, 1 (1989), 185–234.

[46] Arthur E. Hoerl and Robert W. Kennard. 1970. Ridge Regression: Biased Estima-
tion for Nonorthogonal Problems. Technometrics 12, 1 (1970), 55–67.

[47] Yu-Chi Huang, Kuan-Li Peng, and Chin-Yu Huang. 2012. A history-based cost-
cognizant test case prioritization technique in regression testing. Journal of
Systems and Software 85, 3 (2012), 626–637.

[48] Vilas Jagannath, Yun Young Lee, Brett Daniel, and DarkoMarinov. 2009. Reducing
the costs of bounded-exhaustive testing. In FASE. 171–185.

[49] Y Kumar Jain and Santosh Kumar Bhandare. 2011. Min max normalization
based data perturbation method for privacy protection. International Journal of
Computer & Communication Technology 2, 8 (2011), 45–50.

[50] Bo Jiang, Zhenyu Zhang, Wing Kwong Chan, and TH Tse. 2009. Adaptive random
test case prioritization. In ASE. 233–244.

[51] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In FSE. 654–665.

[52] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
Genprog: A generic method for automatic software repair. TSE 38, 1 (2012),
54–72.

[53] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An extensive study of static regression test selection in
modern software evolution. In FSE. 583–594.

[54] Z. Li and M. Harman andR. Hierons. 2007. Search algorithms for regression test
case prioritisation. TSE 33, 4 (2007), 225–237.

[55] Zheng Li, Mark Harman, and Robert M Hierons. 2007. Search algorithms for
regression test case prioritization. TSE 33, 4 (2007), 225–237.

[56] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F Donaldson.
2015. Many-core compiler fuzzing. PLDI 50, 6 (2015), 65–76.

[57] Yiling Lou, Dan Hao, and Lu Zhang. 2015. Mutation-based test-case prioritization
in software evolution. In ISSRE. 46–57.

[58] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan
Zhou, and Lu Zhang. 2016. How Does Regression Test Prioritization Perform in
Real-world Software Evolution?. In ICSE. 535–546.

[59] Qi Luo, Kevin Moran, and Denys Poshyvanyk. 2016. A Large-scale Empirical
Comparison of Static and Dynamic Test Case Prioritization Techniques. In FSE.
559–570.

[60] Qi Luo, Kevin Moran, Lingming Zhang, and Denys Poshyvanyk. [n. d.]. How
Do Static and Dynamic Test Case Prioritization Techniques Perform on Modern
Software Systems? An Extensive Study on GitHub Projects. ([n. d.]).

[61] Alexey G Malishevsky, Joseph R Ruthru�, Gregg Rothermel, and Sebastian El-
baum. 2006. Cost-cognizant test case prioritization. Department of Computer
Science and Engineering, University of Nebraska-Lincoln, Techical Report (2006).

[62] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test case prioritization for
continuous regression testing: An industrial case study. In Software Maintenance
(ICSM), 2013 29th IEEE International Conference on. IEEE, 540–543.

[63] Andrew McCallum and Kamal Nigam. 1998. A comparison of event models for
Naive Bayes text classi�cation. In AAAI. 41–48.

[64] Hong Mei, Dan Hao, Lingming Zhang, Lu Zhang, Ji Zhou, and Gregg Rothermel.
2012. A static approach to prioritizing junit test cases. TSE 38, 6 (2012), 1258–1275.

[65] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Threats to the validity of mutation-based test assessment. In ISSTA. 354–
365.

[66] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing regression test selec-
tion techniques. TSE 22, 8 (1996), 529–551.

[67] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test case prioritization: An empirical study. In ICSM. 179–188.

[68] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 2001.
Prioritizing test cases for regression testing. TSE 27, 10 (2001), 929–948.

666

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, L. Zhang

[69] Ripon K Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E Perry. 2015.
An information retrieval approach for regression test prioritization based on
program changes. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. 268–279.

[70] Theofanis Sapatinas. 2010. Discriminant Analysis and Statistical Pattern Recog-
nition. JRSS 168, 3 (2010), 635–636.

[71] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing Trade-o�s in Test-suite Reduction. In FSE. 246–256.

[72] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Re-
inforcement Learning for Automatic Test Case Prioritization and Selection in
Continuous Integration. In ISSTA. 12–22.

[73] Bharti Suri and Shweta Singhal. 2011. Analyzing test case selection & prior-
itization using ACO. ACM SIGSOFT Software Engineering Notes 36, 6 (2011),
1–5.

[74] Kristen R Walcott, Mary Lou So�a, Gregory M Kapfhammer, and Robert S Roos.
2006. Timeaware test suite prioritization. In ISSTA. 1–12.

[75] Song Wang, Jaechang Nam, and Lin Tan. 2017. QTEP: quality-aware test case
prioritization. In ESEC/FSE. 523–534.

[76] Thomas H Wonnacott and Ronald J Wonnacott. 1972. Introductory statistics.
Vol. 19690.

[77] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In PLDI, Vol. 46. 283–294.

[78] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: a survey. STVR 22, 2 (2012), 67–120.

[79] Lingming Zhang. 2018. Hybrid regression test selection. In ICSE. 199–209.
[80] Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. 2013.

Bridging the gap between the total and additional test-case prioritization strate-
gies. In ICSE. 192–201.

[81] Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, and Hong Mei. 2009. Time-aware
test-case prioritization using integer linear programming. In ISSTA. 213–224.

[82] Xiaofang Zhang, Changhai Nie, Baowen Xu, and Bo Qu. 2007. Test case priori-
tization based on varying testing requirement priorities and test case costs. In
Quality Software, 2007. QSIC’07. Seventh International Conference on. IEEE, 15–24.

[83] Yucheng Zhang and Ali Mesbah. 2015. Assertions are strongly correlated with
test suite e�ectiveness. In FSE. 214–224.

667

