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Virtually any software running on a computer has been processed by a compiler or a compiler-like tool.
Because compilers are such a crucial piece of infrastructure for building software, their correctness is of
paramount importance. To validate and increase the correctness of compilers, significant research efforts
have been devoted to testing compilers. This survey article provides a comprehensive summary of the cur-
rent state-of-the-art of research on compiler testing. The survey covers different aspects of the compiler
testing problem, including how to construct test programs, what test oracles to use for determining whether
a compiler behaves correctly, how to execute compiler tests efficiently, and how to help compiler develop-
ers take action on bugs discovered by compiler testing. Moreover, we survey work that empirically studies
the strengths and weaknesses of current compiler testing research and practice. Based on the discussion of
existing work, we outline several open challenges that remain to be addressed in future work.
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1 INTRODUCTION

Compilers are important tools, because they are a central piece of infrastructure for building other
software. Virtually every program that runs on a computer, ranging from operating systems over
web browsers to small scripts written by end-users, has been processed by a compiler or a compiler-
like tool. Because compilers are such a central piece of infrastructure, they are very widely dis-
tributed. For example, popular compilers of widespread programming languages, such as GCC for
C/C++, are run by millions of users. Beyond these direct users of compilers, typically developers,
much more people indirectly rely on compilers when executing compiled programs.

Even though considerable efforts have been made to improve the quality of compilers, similar to
all other software, compilers still contain bugs [72, 103, 123]. A compiler bug can cause incorrect bi-
nary code to be generated from correct source code. Also, a single bug in a production compiler can
propagate to any application built upon it and cause surprising and possibly harmful misbehavior.
For example, a miscompilation bug in the Java 7 implementation caused several popular Apache
projects to crash.1 Sometimes, compiler bugs may even be injected on purpose to compromise the
security of compiled applications. For example, a malicious variant of Apple’s Xcode development
environment contained a compiler “bug” that introduces a backdoor into every compiled appli-
cation.2 Such compiler backdoors can also exploit accidentally introduced bugs, as evidenced by
work on compromising the Unix sudo tool via a publicly known bug in LLVM [105].

Compiler bugs not only cause unintended behavior with possibly severe consequences, but
also make software debugging more difficult. The reason is that developers can hardly determine
whether a software failure is caused by the program they are developing or the compilers they
are using [26]. For example, when a buggy compiler optimizes a correct program into an executable
that has incorrect runtime behavior, it is unclear to the developer of the program what causes
the unexpected behavior. Since application developers usually assume the misbehavior tends to
be caused by bugs introduced by themselves, they may spend a long time to eventually realize that
a compiler bug is the root cause.

Given the importance of compilers, there is a huge interest in implementing them correctly.
However, reaching this goal is non-trivial, since compilers are complex pieces of software. A typical
compiler consists of a pipeline of interacting components that address, e.g., the lexical analysis of
the source language, parsing the source language into an intermediate representation, applying
semantic checks, optimizing the code, and generating code in the target language. Currently, the
optimization phase and implementation of parallelism and object-oriented features make it more
complex. Because of this complexity, traditional computer science curricula typically dedicate at
least one entire course to the art of constructing compilers. In contrast to other complex software,
the domain that compilers deal with is particularly rich. Both the input and the output of compilers
usually are programs written in Turing-complete languages. Moreover, both the inputs and output
domains are infinitely large, since programs can be arbitrarily long. As a result, reasoning about
the behavior of a compiler is all but trivial.

The difficulties of correctly implementing a compiler lead to several challenges for testing the
implementation. One challenge is the lack of a formal specification of what exactly a compiler
is supposed to do. While the high-level specification is implicitly known—compilers translate a
source program into a target program in a semantics-preserving way—the lower level details are
usually unspecified. For instance, when to apply what optimizations is rarely specified, making it
difficult to check whether a compiler applies all desired optimizations. As an example, the LLVM

1http://blog.thetaphi.de/2011/07/real-story-behind-java-7-ga-bugs.html.
2https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-
app-store/.
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compiler has 58 optimizing transformation passes,3 which can be combined in various ways, but
no specification exists when to apply which of these passes.

Another challenge for testing is the semantic richness of the input and output languages that
compilers deal with. Because source code can express a wide range of computations, including
many computations that cause the program to crash early, automatically creating source code
with non-trivial behavior is difficult. However, such non-trivial programs are often required to
reach deep into the pipelined workflow of a compiler and to test hard-to-reach code. For example,
an input program must pass all sanity checks and type checks in the lexer and parser before it
can test optimizations performed by the compiler. However, a non-compiler program often does
not have such complex checks. A related challenge is that small changes in the input can cause
huge differences in the expected behavior. For example, changing a single character in an input
program may cause the compiler to take a completely different path and to expose completely
different behaviors.

A third important challenge is that compilers have various options and features. For example,
most compilers offer different optimization levels, support several variants of the source language,
and consider multiple target platforms. This multitude of configurations creates a large space that
is difficult to explore exhaustively and orthogonal to the regular input space.

In addition to these challenges, compilers fortunately also have some properties that simplify
the problem of validating their correctness. One such property is that the inputs to compilers are
written in a programming language, i.e., the space of possible inputs is clearly defined by the lan-
guage grammar. In contrast, general-purpose fuzzing tools, such as AFL,4 may not have a grammar
to help control the generation of syntactically valid inputs. Another property that eases compiler
testing is that the semantics of the source language are usually specified, either informally in a
language specification or formally, e.g., for a core of the programming language. As a result, the
expected behavior of (most) programs and thereby also of the compiler output, is known when
running the program. Finally, compiler testing benefits from the fact that for most popular pro-
gramming languages, there are multiple supposedly equivalent implementations, which compiler
testing can exploit as an oracle for differential testing [81] (discussed in detail in Section 4).

Motivated both by the importance of compilers and by the interesting challenges involved in
improving their reliability and correctness, the area has received significant attention from re-
searchers and practitioners. A particularly successful line of work is compiler testing, which has
made tremendous advances in recent years. Several widely adopted tools and approaches have
been developed in the past decade, some of which found hundreds of bugs in production compil-
ers of popular languages [72, 123].

The impressive progress made in compiler testing is good news for developers and users of com-
pilers. However, the huge amount of existing work makes it difficult for interested non-experts
to understand the state-of-the-art and how to improve upon it. This article summarizes existing
work and provides a retrospection of the compiler testing field after years of development. The
readers can thus have an in-depth understanding of the advantages and limitations of the exist-
ing approaches. Our findings can help researchers and practitioners understand more about the
implications of the existing compiler testing approaches and help prompt their adoption in prac-
tice. Based on our analysis, we also point out the current challenges and suggest possible future
directions for compiler testing research.

We present the work on compiler testing from the following six perspectives, as illustrated in
Figure 1:

3https://llvm.org/docs/Passes.html.
4http://lcamtuf.coredump.cx/afl/.
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Fig. 1. Overview of topics covered in this article.

• Constructing test programs: Section 3 presents approaches to creating programs that serve
as inputs for testing compilers.

• Test oracles: Section 4 describes approaches to determine whether the behavior or output
of a compiler is correct or not.

• Optimizing the test process: Section 5 discusses how to make compiler testing more efficient.
• Post-processing of test results: Section 6 presents approaches that help developers prioritize

and understand bugs detected through compiler testing.
• Empirical studies: Section 7 discusses empirical studies performed to better understand

compiler bugs and the process of compiler testing.
• Outlook and challenges for future work: Section 8 presents open challenges that remain to

be addressed by future work.

Orthogonal to the efforts on compiler testing discussed in this article, formally verifying compil-
ers is another attempt towards more reliable compilers. Work on compilers verification [36] checks
whether the implementation of a compiler complies with a formal specification of some correct-
ness properties, such as, to not crash during compilation or to preserve the semantics of the input
program in the produced machine code. A particularly noticeable example is the CompCert com-
piler [76], which targets a subset of the C language and which has been formally verified. For this
article, we focus on compiler testing and do not cover work on compiler verification in detail.

2 SURVEY METHODOLOGY

For this survey, we carefully collect 85 papers from relevant international journals and confer-
ences. To collect these papers, we systematically search the DBLP publication database5 using
the following keywords: “compiler test,” “compiler validation,” “compiler defect,” “compiler bug,”
“compiler vulnerabilit(y/ies),” “compiler fault,” “compiler error,” “compiler issue,” and “compiler
debug.” Then, we manually filter the results by removing irrelevant papers. Finally, we retrieve
additional papers by following references in the already found papers.

5https://dblp.uni-trier.de.
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Fig. 2. Compiler testing papers from 1970 to 2018.

Fig. 3. Paper distribution on each research perspective.

Figure 2 shows the collected papers from 1970 to 2018. We can see that the number of relevant
papers has increased significantly since 2011, indicating that the problem of compiler testing has
received significant attention since then. We further analyze the reason behind this phenomenon.
One possible reason is that some easy-to-use and effective tools such as Csmith [123] and C-
Reduce [97] were developed and released around 2011, since nearly 50% papers from 2011 to 2018
are based on these tools. Actually, this is as expected. For example, constructing test programs
is one of the most important challenges in compiler testing and is the initial step of the testing
process. Csmith makes this step convenient, and thus promotes compiler testing research.

Figure 3 shows the distribution of papers on each research perspective, including constructing
test programs, test oracles, optimizing the test process, post-processing of test results, and empiri-
cal studies. If a paper addresses more than one research perspective, then we categorize it based on
its most important contribution. Figure 3 shows that, like general software testing, most papers on
compiler testing also focus on constructing test programs and test oracles. In particular, construct-
ing test programs attracts most of the attention. This is as expected, because it is the initial step of
the testing process (only after test programs are constructed can the testing process be started).

Furthermore, we are aware of four existing surveys on compiler testing, all of which were pub-
lished before 2005. Burgess [15] summarizes the main automatic compiler testing approaches be-
fore 1994. Boujarwah and Saleh [13] assess and compare various compiler test-program construc-
tion approaches before 1997. Tonndorf [117] presents tool-based Ada compiler validations before
1998. Kossatchev and Posypkin [68] present compiler testing approaches based on formal speci-
fications of the programming language syntax and semantics before 2005. These existing survey

ACM Computing Surveys, Vol. 53, No. 1, Article 4. Publication date: February 2020.
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Table 1. Overview of Approaches for Constructing Test Programs

Constructing Test Programs (Section 3) Approach

Manually Constructing Test Programs (Section 3.2) Callahan et al. [17], Dongarra et al.
[44], Wolf et al. [120]

Test Program
Generation
(Section 3.3)

Grammar-directed Approaches
(Section 3.3.1)

Purdom [96], Hanford [52],
Houssais [61], Duncan and
Hutchison [45], Burgess [34], Burgess
and Saidi [16], Bird and Munoz [12],
Amodio et al. [4], Bazzichi and
Spadafora [9], Zelenov et al. [127],
Zelenov and Zelenova [126],
Lindig [78, 79]

Grammar-aided Approaches
(Section 3.3.2)

Sirer et al. [108], Yang et al. [123],
Morisset et al. [85], Lidbury et al. [77],
Alipour et al. [3], Holler et al. [58],
Boujarwah et al. [14]

Other Approaches (Section 3.3.3) Berry [11], Mandl [80], Eide and
Regehr [47], Nagai et al. [87], Palka
et al. [92], Dewey et al. [41],
Midtgaard et al. [83], Austin et al. [6],
Yoshikawa et al. [125], Zhao et al.
[132], Ching and Katz [32], Kalinov
et al. [64, 65] , Zhang et al. [131], Patra
and Pradel [93], Bastani et al. [8]

Program
Mutation
(Section 3.4)

Semantics-Preserving Mutation
(Section 3.4.1)

Le et al. [72], Le et al. [73], Lidbury
et al. [77], Sun et al. [111], Donaldson
et al. [42],

Non-Semantics-Preserving Mutation
(Section 3.4.2)

Nagai et al. [88], Chen et al. [31],
Holler et al. [58], Garoche et al. [48],
Groce et al. [49],

papers mainly focus on constructing test programs and do not address other research challenges.
Meanwhile, these survey papers were completed 10–20 years ago, which may have limited aids
for current research on compiler testing. Therefore, we believe it is necessary to conduct a new
survey of the field of compiler testing.

3 CONSTRUCTING TEST PROGRAMS

Testing of any kind of software requires test cases. In the realm of compiler testing, programs
form part of the test cases. In this article, we call such programs test programs. Constructing test
programs for testing compilers is not trivial. We describe the challenges faced when constructing
test programs in Section 3.1.

Approaches to constructing test programs can be broadly classified into three categories. Table 1
gives an overview of the broad classification and also shows how each category can be further
divided. Test programs are either manually written or constructed automatically. We explain the
manual approaches in Section 3.2. The automated approaches either generate program fragments
and concatenate them into test programs, or mutate existing programs. Section 3.3 gives details

ACM Computing Surveys, Vol. 53, No. 1, Article 4. Publication date: February 2020.
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Table 2. Summary of the Programming Languages Targeted by Different

Test-program Construction Approaches

Language Approach

C/C++ Eide and Regehr [47], Yang et al. [123], Nagai et al. [87], Nagai et al. [88], Lindig
[78, 79], Groce et al. [51], Le et al. [72], Le et al. [73], Morisset et al. [85], Zhang
et al. [131], Sun et al. [111], Amodio et al. [4], Alipour et al. [3]

JavaScript Holler et al. [58], Groce et al. [49], Patra and Pradel [93], Bastani et al. [8]
PL/I Hanford [52]
Ada Duncan and Hutchison [45], Austin et al. [6], Mandl [80]
Fortran Callahan et al. [17], Dongarra et al. [44], Burgess and Saidi [16]
Java Sirer et al. [108], Boujarwah et al. [14], Yoshikawa [125], Chen et al. [31]
Algol Houssais [61]
APL Ching and Katz [32]
Arden Wolf et al. [120]
Haskell Palka et al. [92]
Lusture Garoche et al. [48]
mpC Kalinov et al. [64, 65]
OCaml Midtgaard et al. [83]
Pascal Burgess [34], Bazzichi and Spadafora [9]
PLZ/SYS Bazzichi and Spadafora [9]
Python Bastani et al. [8]
Ruby Bastani et al. [8]
Rust Dewey et al. [41]
Scala Zhang et al. [131]
GLSL Donaldson et al. [42]

on automated test program generation, and Section 3.4 discusses mutation-based test program
construction approaches. Because automated approaches for test program construction can create
a large number of test programs with little effort, they are widely used in compiler testing.

Table 2 gives an overview of the programming languages targeted by the various approaches
discussed in this section. Overall, the approaches cover a wide range of languages, with C/C++
being the most popular language.

3.1 Challenges for Constructing Test Programs

Constructing test programs for testing compilers is challenging. In particular, it is difficult to con-
struct test programs that are valid, diverse, and meet certain requirements for testing.

Validity of test programs. It is non-trivial to construct valid programs, because of the restrictions
some languages have on using certain language constructs only in a certain way or in a certain
context. Constructing invalid programs is of limited usefulness for testing compilers, since a pro-
gram goes through multiple phases of processing by the compiler; if a compiler is presented with
an invalid input program, then the program tends to get discarded in the initial stages of the pro-
cessing. For example, if a constructed JavaScript program contains a return statement that is not
inside a function, then the program is considered syntactically invalid. Such a program does not
reach the code generation or the optimization phases of a JavaScript engine. In C, for example,
generating a program with undefined behavior cannot be considered as a valid test program, since
the result is invariably correct. Similarly, for many languages, an identifier must be declared before

ACM Computing Surveys, Vol. 53, No. 1, Article 4. Publication date: February 2020.



4:8 J. Chen et al.

being used in the program. Constructing a program while maintaining such restrictions is not al-
ways straightforward. For typed languages in particular, maintaining type constraints during test
program construction is not easy, which often leads to the construction of invalid test programs.

Diversity of test programs. As with all test inputs, constructed test programs should be diverse.
A syntactically diverse set of test programs will exercise different parts of the compiler and po-
tentially increase code coverage of the compiler under test. This can potentially aid in uncover-
ing bugs. In the realm of testing compilers, diversity metrics such as distance between test pro-
grams [30] have been proposed. Although desirable, it is difficult to construct a diverse set of test
programs, since an increase in the number of syntactic language constructs can adversely affect
the validity of the generated programs. For example, it might be desirable that a set of constructed
C test programs contain variables and their corresponding operations using all available types.
Unfortunately, it is not very straightforward for a test program constructor to do so. With the use
of more features, the constructed test program becomes more prone to be generated as invalid.
This is probably the reason many test program generators that we discuss later in Section 3.3 only
generate programs using a subset of all available language features.

Specific requirements imposed by a testing method. The construction of test programs also be-
comes difficult when certain testing methods impose restrictions. For example, a common testing
method is to compile a program with two compilers and compare the execution results. In such a
case, the input program should be free of undefined behavior. However, if we just test for compiler
crashes, the input program does not necessarily have to be free of undefined behavior. Construct-
ing test programs that follow these restrictions or conformance in addition to the validity and
diversity requirements can be challenging.

3.2 Manually Constructing Test Programs

Manually constructed test programs have been used since the early days of compiler testing. Such
test programs can be effective in uncovering bugs, since the programs can be tuned to a particular
need and they are often written to test newly implemented features.

Popular compilers, such as GCC [38], compiler infrastructures, such as LLVM [39], implemen-
tations of the Java platform, such as OpenJDK [40], and browsers, such as Chromium [37], use ex-
tensive manually written test suites to test their implementations. For example, GCC comes with
several test suites for both the runtime libraries and the language front-ends. The documentation
of OpenJDK,6 GCC,7 and Chromium8 all have guides for developers on how a test case should be
written. In addition, there are independently developed conformance test suites, such as the Plum
Hall Validation Suite [62] for C and C++ and Test262 for ECMAScript [46].

Although popular in practice, there has been very limited academic work on manually construct-
ing test programs for testing compilers. One exception is by Callahan et al. [17], who describe the
manual construction of 100 Fortran loops for testing a vectorizing compiler. Such compilers should
be able to determine if a loop can be expressed using hardware-supported vector operations, i.e., if
a loop can be vectorized. The primary goal of the test programs manually constructed by Callahan
et al. is to check whether the compiler vectorizes vectorizable loops rather than to test the cor-
rectness of the generated code. To this end, each of the manually written loop contains some code
that can be vectorized by the compiler. When passing these loops to compilers, Callahan et al. find
that some compilers miss vectorizable loop statements.

6http://openjdk.java.net/jtreg/writetests.html.
7https://gcc.gnu.org/wiki/HowToPrepareATestcase.
8https://www.chromium.org/chromium-os/testing/test-suites.
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Another description of manually constructing test programs is by Dongarra et al. [44], who
collect subroutines and loops that contain parallelism opportunities written by other developers.
Additionally, they themselves also manually write programs containing parallelism opportunities.
The end goal is to measure if Fortran compilers automatically parallelize the loops.

Wolf et al. [120] describe their experience of manually constructing test programs based on
a natural language specification of the programming language. Their approach is to study the
specification sentence-by-sentence, and to create a test program for every testable requirement
given in the specification. Their work targets the Arden language, a domain-specific programming
language to describe medical knowledge.

3.3 Test Program Generation

Although effective, writing test programs manually needs significant effort. As a result, there have
been constant efforts towards designing automatic test program generators for testing compilers.
These efforts can be broadly classified into three categories: grammar-directed, grammar-aided,

and other approaches. We explain these approaches in the following:

3.3.1 Grammar-directed Approaches. Grammar-directed approaches for test program gener-
ation take a language grammar as their input and generate programs based on this grammar.
Grammar-directed approaches are the first approaches proposed for automatic test program gen-
eration to test compilers. Given the context-free grammar of a language, it is natural to walk over
its productions to generate strings of the language. To this end, Purdom [96] presents an approach
to testing the correctness of parsers and grammars based on context-free grammars. The primary
focus is to validate parsers that are automatically generated from context-free grammars and to
find non-reduced grammars (where the grammar contains symbols that cannot be used for a sen-
tence derivation). The generation starts from a unique start symbol and proceeds by applying
left-right rewriting rules from the grammar. The approach uses some heuristics to generate short
sentences by recursively going over the grammar. For testing parsers, it is desirable that the gener-
ated programs cover different states and transitions of the parser. Purdom evaluates his approach
on automatically generated LALR(1) parsers and shows that in many cases, the generated test
programs are able to cover multiple states and transitions of the parser.

Purdom’s [96] test program generation based on context-free grammar faces shortcomings
when the objective is to test all parts of a compiler. By only using a context-free grammar, it
is difficult to express context-sensitive features of a language. Since the end goal of Purdom is to
test parsers that do not expect semantically correct programs, this shortcoming does not affect the
approach.

Approaches that focus on testing harder-to-reach parts of the compiler, instead of only the
parser, use different ways to address context sensitivity during test program generation. The ini-
tial attempts at generating compilable programs based on language grammars tend to extend the
context-free productions with context-sensitive features. The extended grammars form a family
of grammars known as two-level grammars and are introduced by Adriaan van Wijngaarden to
specify ALGOL 68 [118]. Generation of test programs for the goal of testing compilers use three
particular two-level grammars: W-grammars, attribute grammars, and affix grammars. The follow-
ing gives a brief introduction of these three variants of two-level grammars and also explains the
approaches that use each of them. For a comprehensive description about these three types of
grammars, readers are referred to a tutorial by Koster [69].

Affix grammar. Originally invented for linguistic applications [82], affix grammars present a way
of extending context-free grammars with context-sensitive notions using affixes to the grammar
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productions. In principle, affix grammars and attribute grammars that we present later only differ
in terms of their formal notation [69]. Both extend the context-free grammar using parameters.

Inspired by affix grammars, Hanford [52] proposes an approach that uses an extended context-
free grammar. The extended grammar has rules that have other rules known syntax generators

attached to them. A syntax generator effectively acts as a working store. Consider the following
simplified example from Reference [52]:

<label declaration>→ <declaration identifier>,
<label>→ <<lambda>>.

The first line above is the grammar rule,while the second line is the syntax generator. Informally,
these rules mean that whenever an identifier (say, a) is declared, then the syntax generator gets
activated and a rule called <label>→ a gets added to the context-free grammar. Such addition of
rules to the context-free grammar effectively allows programs to be generated with some context-
sensitive features, e.g., “use after declaration.” For each non-terminal in the grammar, a pseudo-
random decision is made to select another non-terminal or a terminal. Hanford implements the
approach as a program called syntax machine, which generates syntactically valid test programs
for a subset of PL/I.

Another approach using affix grammars is presented by Houssais [61], who uses these gram-
mars to generate programs that test an ALGOL 68 implementation. This approach restricts the
domain of the affixes to integers. The program generator creates fragments of the language and
their necessary context by enumerating over each of the productions separately and then the re-
sulting fragments together into the final test programs. Additionally, the approach also has some
code appended to the grammar that aids in the generation of syntactically correct programs.

Attribute grammar. The work by Hanford [52] presented above provides the basic idea that an
extended grammar may be used to generate test programs for testing compilers. Later, Duncan
and Hutchison [45] demonstrate a test program generator using an attributed test grammar.

Attribute grammars are another way of extending context-free grammars by adding attributes
to the grammar rules. Attribute grammars are introduced by Knuth [67], who extends context-free
grammars to express semantics by appending additional information (attributes) to some of the
productions. Knuth’s formulation has two types of attributes: synthesized attributes and inherited
attributes. When the grammar rules are expressed as parse trees, the values of the synthesized
attributes depend on the attribute values of the children, whereas the attribute values of inherited
attributes depend on the attribute values of the parents.

Duncan and Hutchison [45] present a general test grammar, which serves as a guideline of how
and where attributes are to be added to a concrete context-free grammar of a language. As an
example, they apply their test grammar to a subset of a context-free grammar for Ada and add
attributes to the grammar productions. The attributes are non-negative integers, and they guide
the generation of test programs in the sense that the values of the attributes determine which
grammar productions will be used during generation. They show that their approach can be useful
in testing the optimizer of the Ada compiler.

Burgess [34] presents an approach to testing Pascal compilers also based on attribute grammar.
Later, Burgess and Saidi [16] extend it to check for optimization errors in two Fortran compilers.
Similar to the previous work [34], they extend a grammar by adding attributes with the additional
possibility of assigning weights to grammar productions and generate so-called self-checking test
programs. The basic idea of self-checking test programs is to generate assertions along with the test
programs, an idea inspired by a work of Bird and Munoz [12]. The approach uses many heuristics
to generate test programs to test known optimizations applied by compilers. A tester may control
the applications of such heuristics and may specify weights to the grammar productions.
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An approach by Amodio et al. [4] trains a recurrent neural network to generate test programs.
The model is trained to generate data that conform to a given grammar and also respect addi-
tional well-formed properties of the language, such as defining a variable before using it. Such
well-formed properties as specified use the formalism of attribute grammars. To enable the neu-
ral network to learn such properties, the approach computes a context vector for each program
element, which encodes, e.g., the set of variables that has already been defined.

W-grammar. Developed by Adriaan van Wijngaarden to specify ALGOL 68 [118], W-grammars
have been the first kind of two-level grammars. A W-grammar consists of two context-free gram-
mars. One of these context-free grammars is a meta grammar that is used to generate terminal
symbols for the second grammar. The meta grammar can be thought of as a way to generalize
the context-free grammar. Using techniques such as consistent substitution, where all occurrences
of a nonterminal are replaced with the same expansion symbol, W-grammars are able to enforce
context sensitivity.

Bazzichi and Spadafora [9] use a context-free grammar extended with a parameter, which effec-
tively is a W-grammar. They call the new grammar a context-free parametric grammar. The exten-
sion augments a parameter to some of the nonterminal grammar productions. For this particular
case, the parameter itself is a grammar that generates variables. Their objective is to generate both
valid and invalid programs to test compilers. Similar to the work by Purdom [96], the generation
algorithms are skewed towards short derivations to a terminal and towards using all productions of
the grammar at least once. Bazzichi and Spadafora implement their approach for testing PLZ/SYS
and Pascal compilers.

The previous grammar-directed approaches for generating test programs are either based on
a complete language grammar or on a subset of the complete grammar. Zelenov et al. [127] pro-
pose an alternate approach to generating test programs based on a model of a grammar. Given a
language grammar, they introduce grammar transformations to generate a restricted model of a
language grammar. This model contains the minimal set of productions required to generate well-
formed sentences of the target language. This generator contains an iterator, which generates
such model representations, and a mapper, which maps those representations to valid language
sentences. Based on the same generation approach, but specifically aimed at testing optimizations,
Zelenov and Zelenova [126] build a model of the compiler’s optimizer and generate optimization-
targeted tests. The basic idea is to build models of optimizations performed by a compiler and then
to generate tests that contain optimization opportunities.

Lindig [78, 79] presents another approach that directly iterates over the grammar productions.
His approach, called Quest, uses custom grammar-like productions to generate random test pro-
grams for testing C compilers. The goal of the generation is to test if the parameters passed to
a function is received unaltered. The generation is driven by a BNF-style production system that
serves as a generator. Each generator can either generate a type or a value for a type or take other
generators as inputs. Since the goal is to test if values passed to a function is carried forward un-
altered, the test programs contain global variables, functions, and calls to the functions using the
global variables. The functions contain assertions that check if the received parameters have the
expected values.

3.3.2 Grammar-aided Approaches. Grammar-aided approaches take a grammar as an input
and in addition use some heuristics to address context sensitivity. These approaches start with
a template-like, fixed code fragment that acts as a placeholder and then utilize the grammar to
generate the rest of the program. In addition, to guide the overall generation, some approaches
also take a test driver file as an input, while others augment it into grammar productions.

ACM Computing Surveys, Vol. 53, No. 1, Article 4. Publication date: February 2020.



4:12 J. Chen et al.

Sirer et al. [108] propose one such grammar-aided approach to testing the Java virtual ma-
chine (JVM) by probabilistically iterating over the grammar productions. Given a grammar and
a skeletal program called seed, the approach outputs self-checking test programs, i.e., programs
with assertions to validate the correctness of the JVM. The input grammar specification contains
the productions that need to be augmented with other information, e.g., a limit on the number
of times a particular production can be used, and guard conditions that describe the context in
which a production is applicable. The skeletal program contains annotations about the probability
of each production, along with holes to be filled with code fragments generated by the expansions
of the productions.

Yang et al. [123] propose a grammar-aided tool, called Csmith, that creates C test programs. The
tool is based on Randprog [47] (discussed in Section 3.3.3). In addition to functions, global and
local variables, const and volatile variables, all of which exist in Randprog, Csmith generates
programs that contain control flow statements, structs, arrays, and most kinds of C expressions.
The approach uses complex heuristics to avoid generating C programs that have undefined be-
havior as well as that depend on unspecified behavior. The generation starts by creating a main
function and a set of struct type declarations, each of which contains a random number of member
variables of randomly decided types. Using the main function as the starting point, the rest of the
C code is generated based on a subset of the C grammar. Depending upon the current state of the
generation, Csmith chooses an allowable production based on a probability table and a filter func-
tion. The filter function enforces context sensitivity. During generation, Csmith performs certain
safety checks and creates a code fragment only if all safety checks pass.

Several variants of the Csmith test program generator have been proposed. Morisset et al. [85]
modify Csmith to generate programs that test C/C++ concurrency bugs. Their altered version adds
support for mutexes and atomic variables, as well as system calls to lock and unlock the mutex
variables. Also, Lidbury et al. [77] build a test program generator for OpenCL compilers based on
Csmith, which is called CLsmith. CLsmith has six modes in total, and it generates different types
of OpenCL kernels (i.e., test programs) under different modes. For example, in the VECTOR mode,
CLsmith extends Csmith by introducing the capability to generate variables and expressions with
vector types and exercising the rich set of vector operations available in OpenCL [77].

Instead of extending Csmith with additional language features, swarm testing [51] restricts the
set of language features available for generating a specific program. For example, swarm testing
may configure Csmith to not use any arrays for some test programs and not use any pointers
for some other programs. The intuition of this approach is that some bugs are more likely to be
covered by intensively using a subset of all language features instead of equally distributing the
testing effort across all features. Later, Alipour et al. [3] further propose directed swarm testing,
which aims to generate test programs focusing on only part of a compiler through tuning the
set of available language features. More specifically, by analyzing statistical data on past testing
results, directed swarm testing configures Csmith on a set of C language features to generate test
programs with higher probability to cover a specific part of a compiler.

Furthermore, Chen et al. [27] propose an approach, called HiCOND, to finding a set of test config-
urations (which can control the language features of the generated test programs) for test-program
generators (e.g., Csmith) to generate bug-revealing and diverse test programs. More specifically,
HiCOND first infers the range of each configuration option where the bug-revealing test pro-
grams are more likely to be generated based on historical data and then identifies a set of test
configurations that can generate diverse test programs via a search method (i.e., particle swarm
optimization).

Instead of generating or hard coding the placeholder code as in the previous approaches, Holler
et al. [58] use real-world programs as placeholders. They take these programs from a corpus and
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replace some parts of the program with randomly generated code fragments. Code fragments get
generated by iterating over the grammar productions and by taking a random decision whenever
multiple choices are available for a particular production. After a maximum number of iterations,
the remaining nonterminals are always replaced by terminals. These replacement terminals are
again taken from a large code corpus. Additionally, the approach uses some heuristics, such as
renaming of identifiers, to fit the generated code fragments into the target or placeholder program.
The overall approach is a combination of both generation and mutation, and we explain it further
in Section 3.4.

All previous grammar-aided approaches start with a given placeholder input. In contrast,
Boujarwah et al. [14] first generate a test program and then generate additional code to obtain
a semantically correct test program. According to a context-free grammar, their approach tests
certain semantic features of Java compilers. They first decide upon which semantic features of the
language they want to test and then use the context-free grammar, together with a test driver file,
to guide the generation. The test driver file contains information about the language construct to
generate, i.e., how many occurrences of each such language construct to generate, and the order
in which they will get generated. For example, if during generation, Bourjarwah et al. decide to
generate test programs for testing loops, then the test driver may contain which kinds of loops
(for, while, do-while) should get generated and the number of them. Once a language construct
has been generated, the approach generates the required context for the generated code. For ex-
ample, they generate the required type declarations or add necessary imports. The iteration over
the context-free grammar is based on Purdom’s algorithm [96] discussed earlier (Section 3.3.1).

3.3.3 Other Approaches. Not all approaches for automatic test program generation are built on
a grammar of the targeted programming language. The following discusses a set of approaches
that do not use a grammar directly as an input. Many of them generate test programs based on
pre-defined code templates that specify a skeleton for test programs, which is then filled with
additional code snippets.

Berry [11] proposes test program generation for compilers based on the frequency of language
features used by real programmers. To this end, they collect statistics of how language features
are used and then design test programs based on frequently used features. The insight behind the
approach is that features with higher usage frequency are more likely to be used by a compiler
during its practical usage, and hence also more likely to trigger a bug. The approach generates
different hard-coded language snippets based on the collected statistics.

Mandl [80] is an approach to avoiding the generation of duplicated elements in programs. It
uses a unique approach called orthogonal latin squares to generating test programs for validating
an Ada compiler. A latin square is a square matrix where each row and column contains an ele-
ment exactly once, i.e., all elements of the matrix are unique. Two matrices are orthogonal latin
squares if combining them creates another latin square. Mandl represents test templates as orthog-
onal latin squares and generates test programs by replacing elements of a row from the template
matrix with allowable values. Using this latin square representation helps the approach to creat-
ing a test template with different configurations. Each configuration can generate multiple unique
test programs. As an example, suppose the goal is to generate arithmetic expressions. Given the
operands of the expression, the test template matrix could contain the operators of arithmetic ex-
pressions. Going through each row of the template matrix while using the operands, the approach
generates unique arithmetic expressions.

The Csmith approach explained in Section 3.3.2 is an extension of a non-grammar-based ap-
proach called Randprog, which is introduced by Eide and Regehr [47]. As suggested by the name,
Randprog generates random C programs to find miscompilations of C’s volatile qualifier. Each
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program generated by Randprog is hard-coded to first contain a number of randomly initialized
global variables that are either const or volatile. The program then contains functions that de-
clare local variables and that contain expressions using global and local variables. Finally, to make
the programs executable, each program contains a main function.

An approach similar to Randprog is proposed by Nagai et al. [87]. They test code optimization
for arithmetic expressions in C compilers. Each generated test program contains initialized global
and local variables along with arithmetic expressions that use random operators and variables.
The generation uses heuristics to avoid generating undefined behavior. During generation, the
approach precomputes the result of each expression and inserts a runtime check that compares
the precomputed result with the actual result. In a follow-up work, Nagai et al. [88] improve upon
their work by mutating arithmetic expression, which we explain in Section 3.4.

Randprog [47] and the approach by Nagai et al. [88] start by generating fixed language con-
structs and then randomly generate the rest of the program. In contrast, Palka et al. [92], similar
to some grammar-aided approaches (Section 3.3.2), start with a placeholder and expand the place-
holder with random Haskell terms. In addition to the placeholder, they take type rules written in
judgment proposition notation as inputs and generate well-typed Haskell terms. Each type rule
has an associated environment that contains a list of identifiers and their corresponding types.
For each type rule, the approach first recursively generates the terms present in the premise and
then generates the terms in the consequence. Instead of directly using the type rules, Dewey et al.
[41] present a fuzzing technique using constraint logic programming (CLP). The type judgments
are written in CLP specifications and used as an input to CLP engine for generation. They extend
swarm testing ideas to find defects in the Rust type checker; i.e., instead of creating one generator
that encompasses all of Rust, they create different generators that focus on different parts of the
Rust type system.

The approach of Palka et al. [92] (presented in the previous paragraph) is later refined by
Midtgaard et al. [83]. They observe that, in some languages, the evaluation of expressions de-
pends on an unspecified evaluation order. For example, if the evaluation order is not specified, the
outcome of the left-to-right evaluation of an expression can be different from the right-to-left eval-
uation. Since it is difficult to judge the correct outcome of an evaluation order-dependent expres-
sion, their approach tries to avoid creating such expressions. To this end, they refine the approach
of Palka et al. [92] by introducing type and effect rules. During generation, the approach avoids
the generation of programs that depend on the evaluation order using some predefined rules.

Instead of hard-coding the features of the generated test programs in the generator, some ap-
proaches use configuration or template files that a user can control. Austin et al. [6] present such
a program generator for testing Ada compilers. The approach generates complex Ada expressions
in a recursive descent manner by taking random decisions for alternative syntactic decisions. The
generator is configurable in the sense that a tester can specify, e.g., the size of the integers produced
or the seed used for random decision.

Yoshikawa et al. [125] present a similar configuration-driven generation approach with the
knowledge of syntax and the application of heuristics. The generation starts by generating a ran-
dom number of Java classes having acyclic parenthood relationships. This is followed by the gen-
eration of fields for each class followed by generation of methods. The methods are then filled with
control flow information. For example, method invocations are added randomly into each method
body. These additions are made with some constraints to avoid certain behaviors such as infinite
method calls.

Zhao et al. [132] present another configuration-driven approach of test program generation
that targets at testing compiler optimization. The approach takes a test configuration file as an
input, which specifies, e.g., which variable type should be generated, what operators need to be
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generated, and how many branches and loops are used in the test programs. Moreover, a user can
configure which optimization to be tested. The optimizations to be tested are specified as temporal
logic formulas, which in turn are converted into graph structures. The graphs are then converted
to templates whose expansion leads to the generated programs.

Similar to Berry [11] (presented in the beginning of Section 3.3.3), Ching and Katz [32] propose
an approach to testing an APL compiler using programs collected from real-world applications.
Additionally, Ching and Katz [32] also propose generation of unit tests from templates. A template
here represents a test with special symbols denoting functions and data types. During generation,
these symbols are replaced with concrete values and the particular function being tested. The
functions here are built-in functions of APL.

In addition to a template, an approach by Kalinov et al. [64, 65] also takes an input expression
for test program generation that they use to find bugs in mpC, a parallel language compiler. The
template contains a set of mpC operators, while the expression is a valid expression called seed
expression provided by the testers. Starting from this seed expression, the approach generates
multiple variant expressions by using the operands from the seed expression and operators from
the template. The mpC language is specified as a visual formalism called Montages [70] that can
express the syntax as well as the execution behavior. Kalinov et al. [64, 65] use this specification
to filter out positive and negative examples during test program generation.

Zhang et al. [131] propose skeletal program enumeration. Given a program skeleton, i.e., source
code with holes to be filled with variable names, the approach exhaustively enumerates all pos-
sible variable usage patterns. Because different assignments of holes to variable names may be
equivalent, the approach enumerates only one program out of a set of equivalent programs under
alpha renaming, i.e., under a consistent renaming of variables names.

Following the recent trend of using machine learning on software artifacts, e.g., source code,
several approaches for learning-based generation of test programs have been proposed. They all
share the basic idea of learning a model from a corpus of code examples and to then use this model
to generate additional test programs. The approaches differ in the kinds of models they use and in
the kinds of program properties they are targeting, as explained in the following. We have already
introduced one such approach by Amodio et al. [4] in Section 3.3.1, who train a recurrent neural
network to generate test programs. Another learning-based approach called TreeFuzz [93] learns
a set of probabilistic generative models of tree-shaped data, such as programs represented by an
AST. The models address both syntactic and semantic properties of programs, e.g., by learning
what children nodes a particular node typically has or by learning definition-use-like relation-
ships between occurrences of the same variable. The approach has been used for testing JavaScript
engines.

Bastani et al. [8] propose to learn a grammar based on examples of data accepted by the grammar
and on black-box access to a parser for the grammar. The approach iteratively constructs a gram-
mar that accepts an increasingly general language, starting by synthesizing regular expressions
and by then generalizing the regular expressions into a context-free grammar. Once the grammar
is learned, it can be used to sample new test programs. The approach has been used for a variety
of data formats, including test programs in Python, Ruby, and JavaScript.

3.4 Program Mutation

Instead of generating complete programs from scratch, the main idea of program mutation is to
modify parts of an existing test program. However, it is possible that the existing program it-
self is generated using approaches presented in Section 3.3. It is interesting to note that most
program mutation–based approaches for testing compilers are a result of very recent research ef-
forts in the past decade. These research efforts are driven by the success of Csmith [123] and in
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many cases either mutate Csmith-generated programs or build upon the shortcomings of Csmith.
Furthermore, it is also interesting to note that a large portion of the mutation approaches find
bugs in the optimization phase of the compiler. The reason for this is that, by code mutations
and by complicating control flow, the approaches provoke the optimizer. Overall, the mutation ap-
proaches to constructing test programs can be classified into two categories. One category is based
on semantics-preserving mutation (Section 3.4.1), and the second category is based on mutations
that do not try to preserve the semantics of a program (Section 3.4.2).

3.4.1 Semantics-preserving Mutation. The main idea of semantics-preserving mutation is to
mutate without changing the behavior of the program. Almost all semantics-preserving muta-
tions are based on the general idea of equivalence modulo inputs (EMI) [72]. Informally, two test
programs written in the same programming language are equivalent to each other under a set
of inputs, if for each input of the set their behaviors are the same. Actually, EMI makes greater
contribution to test oracles in compiler testing, and thus more details about it are presented in
Section 4.2. Mutation approaches leverage the general idea of EMI by mutating programs to their
semantic equivalences, and these semantic-preserving mutants can also be regarded as a type of
test program.

Based on the general idea of EMI, Le et al. [72] propose Orion to validate C compilers by ran-
domly mutating non-executed parts of code to create test programs. The premise of Orion is mu-
tating non-executed part of the code should not alter the behavior of the program, and a diverging
behavior can potentially be due to a bug. Later, Le et al. [73] extend Orion, called Athena, and in-
stead of blind random mutations inOrion adopt a guided mutation strategy. Given a program, they
mutate the non-executed parts of the program with the objective to generate a mutated program
having a large distance with the original program. The distance is calculated based on control-
flow graph (CFG) nodes, the distance between the CFG edges, and the program sizes. To guide the
mutation, Athena uses Markov Chain Monte Carlo (MCMC) sampling that selects mutated pro-
grams with large distances. In contrast toOrion, where the only mutation operation was to delete
non-executed code, they additionally insert code into the non-executed parts of the program. Both
of these approaches use Csmith as the source program generator on which the mutations are
performed.

Lidbury et al. [77] present fuzzing of OpenCL compilers also using the basic idea of EMI. They
modify Csmith to generate programs suitable for OpenCL compilers and perform semantics-
preserving code mutations. The mutation operation is the insertion of code known to be dead-
by-construction at random locations of the original program.

The code mutation strategies adopted by Le et al. [72, 73] and Lidbury et al. [77] either delete
or insert dead code. In comparison, Sun et al. [111] present Hermes, including some novel EMI-
based mutation strategies. In addition to dead code,Hermes mutates live code or the code that gets
executed. The mutation strategies adopted by Hermes involve insertion of code blocks where the
conditional predicate always evaluate to false, wrapping an always true code block around live
code and insertion of side-effects-free self-constructed live code. A similar mutation approach has
also been proposed by Donaldson et al. [42], who apply semantic-preserving transformations to
test graphics shader compilers. Some of the code transformations applied by them are similar to
the mutation operations of Sun et al. [111]. In addition, they also apply code transformations such
as mutation of numeric and Boolean expressions.

3.4.2 Non-semantics-preserving Mutation. In addition to semantics-preserving mutations, there
exist approaches that mutate programs without keeping the same semantics. The main motivation
of mutation for such approaches is to make a program suitable for testing compilers, e.g., by avoid-
ing undefined behaviors or by creating more diverse test programs.
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To this end, Nagai et al. [88] extend their previous work of generating random arithmetic ex-
pressions [87] (Section 3.3) using non-semantics-preserving mutation of the generated expres-
sions. In their previous work [87], Nagai et al. avoid generating long arithmetic expression with
the assumption that longer expressions are more susceptible to induce undefined behaviors. They
improve upon this and avoid undefined behaviors in long expressions by mutating the undefined-
behavior-producing expression with some heuristics and apply it for testing C compilers. The
heuristics are, for example, flipping an operation or by inserting an operation. As a result, they are
able to generate larger arithmetic expressions and are able to find errors in C compilers.

The main idea of Chen et al. [31] for testing JVM implementations, is similar to that of Le
et al. [73] (Section 3.4.1), i.e., instead of blind mutations, performing MCMC (Markov Chain Monte
Carlo) sampling. The objective is to select mutations that have larger possibilities to trigger com-
piler bugs. More specifically, to test JVM implementations, Chen et al. [31] mutate class files with
a wide range of mutation operations. They have implemented many mutation operations, such as
inserting/deleting methods into/from class.

Holler et al. [58] present a mutation-based approach called LanдFuzz that finds bugs in the
JavaScript interpreter of Mozilla Firefox. LanдFuzz contains two phases: learning and mutation.
In the first phase, it learns a large pool of code fragments by processing a set of sample input files
using a parser. These are actually non-terminal expansions of the grammar. In the next phase, they
parse a target program and replace some randomly chosen non-terminals with the expansions of
the same type from the learned pool. For some cases, instead of choosing the replacement from the
pool, they generate the replacement using a grammar. It is possible that the replacement fragments
do not fit into the target program and they use some heuristics to fix this. For example, if the
replacement fragment contains identifiers that are not declared in the target program, the target
program might crash. To mitigate such situations, they rename all identifiers occurring in the
replacement code fragment with some identifiers occurring somewhere in the target program.

Certain mutation approaches take a complete test suite as input and mutate with varying goals
in mind. To this end, Garoche et al. [48] present a mutation approach with the goal of producing
more failure-inducing programs using existing test suites. The mutation approach does not alter
the control flow or the overall semantic structure, albeit changing the semantics of entire programs.
The mutation operations are, for example, replacement of arithmetic or Boolean operations and
replacement of constants with others. However, Groce et al. [49] mutate test programs with the
goal of still maintaining certain properties. As an example goal, they successfully reduce the test
suite of Spidermonkey while retaining the statement coverage. The overall mutation operation is
a generalization of delta debugging [128] introduced by Zeller. Groce et al. call their reduction
approach cause reduction and in addition to maintaining coverage, can also be used to keep other
properties, such as maintaining the same failure-inducing test programs in the test suite.

4 TEST ORACLES

As any testing activity, compiler testing must address the test-oracle problem, i.e., to determine
whether a given test program exposes any undesired behavior. To address this challenge, several
approaches have already been proposed in the literature. We categorize these approaches into two
groups: differential testing [81] (presented in Section 4.1) and metamorphic testing [29] (presented
in Section 4.2).

4.1 Differential Testing for Compilers

To solve the test-oracle problem for complex software such as compilers, McKeeman et al. [81]
propose the concept of differential testing. In general, differential testing for compilers needs at
least two compilers that are designed and implemented based on the same specification, and then
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Table 3. Usage of the Three Differential-testing Strategies in Compiler Testing

Paper Cross-compiler Cross-optimization Cross-version

Sheridan [107] �
Ofenbeck et al. [90] �
Sassa and Sudosa [104] �
Morisset et al. [85] �
Le et al. [74] �
Béra et al. [10] �
Hawblitzel et al. [54] � �
Chen et al. [31] � �
Sun et al. [110] � � �

compares the results from these comparable compilers to determine whether compiler bugs are
detected. To select the implementations to compare, there are several variants of differential testing
for compilers. In particular, Table 3 summarizes the usage of three widely used differential-testing
strategies in compiler testing.

• Cross-compiler strategy: Detect compiler bugs by comparing results produced by differ-

ent compilers. This strategy is the most general concept in differential testing for compilers.
• Cross-optimization strategy: Detect compiler bugs by comparing results produced using

different optimizations implemented in a single compiler. This strategy is the most widely
used strategy in the existing compiler-testing research.

• Cross-version strategy: Detect compiler bugs by comparing results produced by different

versions of a single compiler.

Sheridan [107] uses the cross-compiler strategy to test a C99 compiler, the PalmSource Cobalt
ARM C/C++ embedded cross-compiler. In this work, Sheridan compares the output of the compiler
under test and that of the preexisting tools to detect compiler bugs. In particular, they use the
GNU C Compiler in C99 mode and the ARM ADS assembler as the preexisting tools. The insight
as to why they utilize this strategy includes three points: First, different compilers for the same
programming language are expected to produce the same output for the same input. Second, if the
input can trigger a bug, different compilers seldom expose the same bug and produce the same
buggy output under the same input due to the differences between their implementations. Third,
if two compilers produce different outputs under the same input, one of them must contain a bug.

Ofenbeck et al. [90] propose to detect compiler bugs by taking random instances of an IR (inter-
mediate representation) as inputs through differential testing, which is called RandIR. They target
at vanilla Scala code in their study. When using RandIR, the users should give the grammar of
the code that is represented by the IR [90]. Actually, the grammar is a collection of typed func-
tions/operations. More specifically, RandIR first randomly constitutes the operations provided by
users and records the information in a typed dependency graph. Then, it translates the consti-
tuted operations to regular Scala functions. To conduct differential testing, it still requires another
regular Scala program. Here, the program can be produced based on the typed dependency graph
or another compiler pipeline that transforms IRs to Scala functions. That is, they use the cross-
compiler strategy for differential testing.

Sassa and Sudosa [104] use the cross-optimization strategy to test optimizers of a compiler. In
particular, their approach detects compiler bugs by comparing traces of important values before
and after optimizing the given test program. If the traces are different, then it means that a bug
in the optimizer is detected. To conduct such a comparison, the first step is to determine which
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values of variables should be compared. The second step is to determine when during the program
execution the comparison should be conducted. The final step is to conduct the comparison. In
particular, the comparison on values of variables is based on the traces of variable information,
including basic block number, instruction number in the basic block, variable name, and the value
of variables.

Morisset et al. [85] use the cross-optimization strategy to detect concurrent bugs in C11/C++11
compilers. Since concurrent test programs are not deterministic and compiler optimizations can
compile away non-determinism, it is essential to ensure that all the behaviors of an executable pro-
duced by a compiler are allowed by the source-program semantics. To conduct differential testing
for concurrent compiler bugs, they must assume that the sequential code that is optimized by
C11/C++11 compilers can be run in any concurrent context. In particular, there is one constraint,
which is that the test program is well-defined and can only apply sound optimizations for the
concurrency model. More specifically, this work presents the correctness of the criteria for sound
optimizations in the C11/C++11 model. Based on the theory of sound optimizations, they develop a
tool, called cmmtest , to conduct differential testing of concurrent compiler bugs. The tool compiles
the same test program using the compiler with optimizations under test and the compiler with-
out turning on any optimization, and then records their memory traces (i.e., all memory accesses
to global variables and synchronizations). Finally, it compares the recorded traces to determine
whether a compiler bug is detected. In particular, it checks whether the trace from the compiler
with optimizations under test can be transformed from the trace of the reference compiler by con-
ducting some transformation rules, including the valid elimination rule, the reordering rule, and
the introduction rule.

Le et al. [74] use the cross-optimization strategy to test link-time optimization (LTO) of compil-
ers and develop a tool called Proteus . More specifically, Proteus compiles a test program in three
different ways. The first way is that, the test program is directly compiled by the compiler under
test without turning on LTO. The second way is that the test program is compiled by the com-
piler under test with turning on LTO and various other optimizations. The last way is that the test
program is first split into a set of compilation units, and then the set of compilation units are sep-
arately compiled by the compiler under test under various optimizations and linked with turning
on LTO. The results produced in the above three different ways should be the same. Otherwise,
there is a compiler bug that is detected.

Béra et al. [10] use a variant of the cross-optimization strategy to test dynamic deoptimization of
bytecode-to-bytecode JIT compilers. They compare the abstract stack of deoptimization and that
of non-optimization to detect bugs. In particular, they apply symbolic execution on the bytecode
produced by the compilation with optimizations and that produced by the compilation without
optimizations. During the process of symbolic execution, when coming across a point where the
dynamic deoptimization can be applied, they stop symbolic execution and then compare the stack
of abstract values of deoptimization and that of non-optimization to guarantee the correctness of
deoptimization for each value.

Some work uses multiple test oracle strategies at the same time. Hawblitzel et al. [54] pro-
pose to detect compiler bugs by comparing assembly language outputs of (1) multiple versions
of a compiler (cross-version strategy) and (2) a compiler with different optimization levels (cross-
optimizations strategy). Besides, this work also uses other strategies, including cross-architecture

strategy, in which compiler bugs are detected by comparing results produced on different archi-
tectures for a compiler (i.e., ARM and x86); and cross-scenario strategy, in which compiler bugs are
detected by comparing results produced in different compilation scenarios of a compiler (i.e., Just-
In-Time and Machine Dependent Intermediate Language). During comparison, their proposed tool
proves the equivalence between assembly language programs using the symbolic differencing tool
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SymDiff, the program verifier Boogie, and the automated theorem prover Z3. Since an assembly lan-
guage program consists of a collection of compiled methods, their tool first converts each of these
methods into a procedure in the Boogie language. Then, it uses SymDiff to integrate converted
methods into a single block of Boogie code. Next, it uses the Boogie program verifier to convert the
assertions into verification conditions. Finally, it uses Z3 to prove whether these verification con-
ditions are valid. To reduce false alarms, their tool automatically produces counterexample traces
that show values causing different behaviors in the two assembly language programs.

Chen et al. [31] propose to test JVM implementations via differential testing, focusing on the
startup processes of JVMs. A JVM startup process includes four steps, i.e., loading, linking, initial-
izing, and invoking classes. During the process of differential testing, their approach uses cross-
compiler strategy and cross-version strategy to detect JVM discrepancies. More specifically, they
propose a coverage-directed fuzzing approach, called classfuzz, to generate representative class-
files (referring to those that are likely to be distinct) for differential testing.

Sun et al. [110] propose to detect incorrect compiler warnings via differential testing. They
use all the three strategies for differential testing, i.e., cross-compiler strategy, cross-version strat-
egy, and cross-optimization strategy. Their approach first randomly generates test programs to
make compilers emit various compiler warnings. Their program generation approach is based on
two observations from historical warning bugs. First, most historical bugs are irrelevant to the
bodies in conditional statements. Second, most historical bugs do not occur at the regions of ob-
viously dead code. Then, since the warnings emitted by different compilers, different versions of
one compiler, and different optimizations of one compiler version are described differently using
the natural language, their approach conducts the alignment for these warnings. In particular,
their approach extracts the warning elements that can be recognized by computers from warning
descriptions for alignment. Finally, their approach identifies inconsistencies as potential warning
bugs.

Besides, Kitaura and Ishiura [66] propose to detect performance bugs via differential testing.
They use both cross-compiler strategy and cross-version strategy. Their approach is based on
mixed static and dynamic code comparison. In the static step, it first compares the assembly codes
produced from a given test program under two different compilers/versions to detect a code differ-
ence, and then reduces the test program to isolate the difference. In the dynamic step, it executes the
codes produced from the reduced test program under two different compilers/versions to compare
their actual execution time. For the performance of compilers, there is also some research on find-
ing missed compiler optimizations (i.e., optimizations performed by one compiler but missed by
another compiler) [7, 53, 86]. For example, Barany [7] uses differential testing (i.e., cross-compiler
strategy) to find missed optimizations in C compilers. In particular, they develop a tool to statically
compare the binary codes produced from a test program under two compilers.

4.2 Metamorphic Testing for Compilers

Metamorphic testing [29] is another popular approach for addressing the test-oracle problem. The
core idea of metamorphic testing is to construct metamorphic relations, which specify how partic-
ular changes to the input of the project under test would change the output. For example, when
testing the sine function, it is difficult to determine the expected output of sin(1). However, the
mathematical property of the sine function, i.e., sin(x ) = sin(π − x ), can help test sin(x ). In other
words, we can test whether sin(1) = sin(π − 1) to facilitate the testing of the sine function.

To apply metamorphic testing to compilers, several metamorphic relations have been proposed,
as summarized in Table 4. In particular, the most widely adopted metamorphic relations are the
equivalence relations that establish that two programs are equivalent under some assumptions.
The following discusses the approaches summarized in Table 4 in more detail.
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Table 4. Metamorphic Relations Used in Compiler Testing

Paper Metamorphic

relation

How to construct metamorphic relations

Tao et al. [114] Equivalence relation Constructing equivalent expressions, assignment
blocks, and submodules

Le et al. [72] Equivalence relation
under a given set of
test inputs

Deleting code in the dead regions under the set of
test inputs

Le et al. [73] Equivalence relation
under a given set of
test inputs

Deleting and inserting code in the dead regions
under the set of test inputs

Sun et al. [111] Equivalence relation
under a given set of
test inputs

Inserting code in both the live and dead regions
by synthesizing valid semantic-preserving code
snippets under the set of test inputs

Donaldson and
Lascu [43]

Equivalence relation Injecting dead code into test programs

Nakamura and
Ishiura [89]

Equivalence relation Applying a set of equivalent transformation rules
on test programs

Donaldson et al.
[42]

Equivalence relation Applying a set of (essentially)
semantics-preserving transformations on
high-value graphics shaders

Samet [99–101] Equivalence relation Converting a source program and the object
program into an intermediate representation,
respectively

Tao et al. [114] develop a testing tool, called Mettoc , to test compilers via metamorphic testing,
where they consider the equivalence-preservation relation as the metamorphic relation.Mettoc gen-
erates at least two equivalent test programs and then uses the compiler under test to compile them
to produce executables. After running these executables, producing different results means that a
bug is detected. Here, Mettoc generates equivalent test programs by constructing equivalent ex-
pressions, assignment blocks, and submodules. Here, “assignment block” refers to a compounded
statement consisting of a sequence of assignments, and “submodule” refers to a compounded state-
ment that may contain conditional structures. More specifically, Mettoc first constructs a general
control flow graph, and each block node of the graph represents a submodule. Then, Mettoc uses
those equivalent statements or expressions to fill in each block node. Finally, it traverses the filled
graph to generate the equivalent test programs.

Le et al. [72] introduce the concept of Equivalence Modulo Inputs (EMI) to test compilers. Dif-
ferent from the used metamorphic relations in Tao et al. [114], this work adopts the equivalence

relation under a given set of test inputs as the metamorphic relation. Given a test program and a
set of test inputs of the test program, EMI first generates a series of equivalent variants with the
original one under the given test inputs. Taking the original program and its equivalent variants as
the inputs of a compiler, the compiler produces executables accordingly. Then, these executables
should produce the same results when executing under the given test inputs. Otherwise, there is
a compiler bug that is detected.

In particular, EMI is a general idea and has three instantiations, called Orion [72], Athena [73],
and Hermes [111]. The difference among them is mainly the way of generating equivalent vari-
ants with a given test program under a set of test inputs. Orion generates equivalent variants by
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randomly deleting non-executed statements under the given test inputs [72]. Athena utilizes the
MCMC (Markov Chain Monte Carlo) algorithm to guide the generation process by introducing
insertion operations in the non-executed regions besides deletion operations [73]. Hermes further
introduces mutations in both live and dead regions by synthesizing valid semantic-preserving code
snippets under the set of test inputs [111]. More details about the way of generating equivalent
variants have been presented in Section 3.4.1.

Similar to the idea of EMI [72], Donaldson and Lascu [43] utilize metamorphic testing to test
OpenGL compilers. This work proposes to inject dead code into existing test programs to construct
equivalent program variants. The original test program and its equivalent program variants should
produce the same results. Otherwise, a compiler bug is detected. Furthermore, Nakamura and
Ishiura [89] propose to construct equivalent programs to test C compilers by designing a set of
equivalent transformation rules on existing test programs.

Later, Donaldson et al. [42] propose to test graphics shader compilers via metamorphic testing.
More specifically, they leverage existing graphics shaders of high value to create sets of semanti-
cally equivalent transformed shaders by applying a set of (essentially) semantics-preserving trans-
formations. Here, a semantics-preserving transformation means that the transformation will have
no impact on computation. The exception is the floating-point computation in which it is possible
to induce slight changes at the transformation point. That is, it is different from the deterministic
equivalence used in the existing work [72, 114].

Different from the metamorphic relations whose inputs are equivalent source programs,
Samet [99–101] tests compilers based on the metamorphic relations whose inputs are a source

program and the object program produced by a compiler under test. Their approach utilizes the
intermediate representation (IR) to evaluate the equivalence between a source program and the
object program produced by a compiler to detect compiler bugs. It first converts a source program
into an IR, then converts the object program to the IR, and finally checks the equivalence between
the two IRs. In particular, the IR of the object program is obtained by the process of symbolic
interpretation.

5 OPTIMIZING THE TEST PROCESS

Typically, compilers are well tested and are widely used, and thus it is difficult to detect latent
bugs in compilers. In fact, compiler testing approaches tend to take a long period of testing time
to find a relatively small number of compiler bugs through running a lot of test programs [26,
73, 74, 123]. To address this efficiency problem, some optimization approaches for test-program
execution have been proposed in the literature [19, 22, 23, 49, 122]. These optimization approaches
can be divided into two types: test-program prioritization (presented in Section 5.1) and test-suite
reduction (presented in Section 5.2).

5.1 Test-program Prioritization

In compiler testing, among all available test programs, only a small number can trigger bugs.
Therefore, if we run these programs earlier, the efficiency of compiler testing can be improved.
Test-program prioritization is a way to optimize the test-program execution order such that the
programs with larger possibilities to trigger compiler bugs can be executed as early as possible
[124].

Traditional test prioritization approaches [124] are infeasible for compiler testing, and the rea-
sons are presented below. First, most traditional test prioritization approaches rely on code cover-
age (e.g., statement coverage). The coverage information can be collected in the regression testing
scenario [98, 130]. However, the test programs for compiler testing tend to be randomly gener-
ated on the fly via automated program generators (e.g., Csmith [123]). Therefore, their coverage
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information is not available before testing. That is, coverage-based test prioritization is not a good
match for accelerating compiler testing. Second, there are also some other test prioritization ap-
proaches based on only test-input information [63, 115]. Unfortunately, an existing study [22] has
evaluated the effectiveness of the state-of-the-art test-input–based test prioritization approach on
accelerating compiler testing [63], and their results demonstrate that it cannot accelerate com-
piler testing, since the time required for prioritization is very long. The limited applicability of
traditional test prioritization approaches motivates new work on test-program prioritization for
compiler testing.

Chen et al. [23] propose a test-program prioritization approach by transforming each test pro-
gram to a text-vector. Here, this approach considers three categories of bug-relevant tokens, i.e.,
statements, types and modifiers, and operators, for the transformation. Based on these text vec-
tors, this approach then uses three strategies to prioritize these test programs: (1) The first one is
to schedule test programs following the descending order of distances between text vectors and
the origin vector (0,0, . . . ,0), which is called the greedy strategy. (2) The second one is to schedule
test programs by borrowing the strategy of adaptive random testing. More specifically, it selects
the next test program, minimizing the distance to the already selected test programs. (3) The third
one is to schedule test programs using a local beam search strategy.

Later, Chen et al. [22] propose the idea of “learning to test.” Based on this idea, they implement
an approach (called LET) to prioritizing test programs. The key insight of LET is that, if a test
program contains certain features, then it can be hard to compile or optimize, and thus it has
a larger possibility to trigger compiler bugs. LET first extracts two categories of features that are
helpful to reveal compiler bugs to some degree. The first one is existence features, reflecting whether
some types of elements are in the target test program. The second one is usage features, reflecting
how these elements in the target test program are used. Based on the two categories of features,
LET builds a capability model and a time model. The former aims to predict the bug-revealing
probabilities for new test programs, while the latter aims to predict the execution time for new test
programs. Based on both models, LET computes the bug-revealing probability per unit time for
each new test program. Finally, LET schedules these new test programs according to the computed
values.

Since the above proposed test-program prioritization approaches ignore the case in which dif-
ferent test programs may have the same test capabilities (i.e., testing the same functionalities of
a compiler, even detecting the same bugs), such neglect may discount their acceleration effec-
tiveness. To relieve this problem, Chen et al. [21, 28] propose an approach to distinguishing test
programs with different test capabilities based on test coverage information. As discussed before,
test-program coverage information in compiler testing is not available in advance, and thus he pro-
poses to predict coverage statically based on test-program features, without test execution. Then,
according to the statically predicted test coverage, this approach clusters test programs into dif-
ferent groups, each of which tends to have the similar test capability. Finally, this approach ranks
test programs by iteratively enumerating each group.

5.2 Test-suite Reduction

Test-suite reduction is also a way to reduce testing costs [24]. It improves the efficiency of compiler
testing by excluding redundant test programs. There are at least three approaches aimed at test-
suite reduction for compilers. Two of them focus on retargeted compilers for embedded processors,
which are developed by adapting existing compilers [19, 122].

Woo et al. [122] propose an approach to removing redundant test programs for retargeted
compilers according to the IR-level coverage information. They work at this for three reasons:
(1) different test programs at the source-code level are able to be mapped to the same program
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at the IR level; (2) the machine code produced by compilers has the direct dependency on the IR;
(3) the modifications of retargeted compilers extensively occur at the compiler back-ends during
retargeting. This approach aims to acquire a test suite that has a smaller size but does not reduce
the grammar coverage of the intermediate language [71]. More specifically, it assures that every
preserved test program in the test suite should be able to cover at least one new grammar rule.

Chae et al. [19] further extend the above test-suite reduction approach [122]. First, they inves-
tigate a new kind of grammar coverage in their approach to test compilers such as n-state path
coverage [64], making this approach more general. Second, they develop a fully automatic tool to
reduce a test suite, which first generates a test suite according to the used coverage criteria and
then reduces this test suite using the proposed reduction approach.

In addition to excluding redundant test programs from a test suite, Groce et al. [49] propose
to reduce a test suite of a compiler by simplifying each test program but retaining all test pro-
grams. This approach is called cause reduction. Cause reduction is actually a generalization of delta
debugging [128]. It simplifies each test program by maintaining test coverage.

6 POST-PROCESSING OF TEST RESULTS

Once compiler testing has found test programs that trigger a compiler bug, the next step is to un-
derstand and fix these bugs. To facilitate this task, several research efforts focus on post-processing

of test results. We discuss these efforts in three groups: test program reduction (presented in Sec-
tion 6.1), duplicated bug identification (presented in Section 6.2), and compiler bug debugging
(presented in Section 6.3).

6.1 Test Program Reduction

Test programs tend to be large and complex. Therefore, an important step before reporting a com-
piler bug to a compiler developer is to produce a small test program that still triggers the compiler
bug, i.e., test program reduction. This is because small test programs can facilitate the debugging
of compiler bugs for developers. This post processing is also encouraged by compiler developers.
For example, in the documentation of LLVM, there is the following declaration: “...to narrow down

the bug so that the person who fixes it will be able to find the problem more easily....”
Delta debugging is an approach to determining the minimal set of failure-inducing changes

in a faulty program in general [128]. Also, Zeller and Hildebrandt [129] apply delta debugging to
simplify tests and utilize delta debugging to isolate the difference between passing tests and failing
tests. Furthermore, there are various delta debugging algorithms proposed in the literature [5, 84].
However, they cannot effectively reduce test programs of compilers well, since they tend to get stuck
in the local optima that are still too large. Besides, for some compilers such as C/C++ compilers,
they often generate test programs with undefined behaviors, which are useless for those compilers.

To solve these problems, Regehr et al. [97] leverage domain-specific knowledge to solve the local
optimal problem and avoid undefined behaviors directly during reduction. More specifically, they
design and implement three reducers for test programs of C compilers as follows:

• The first one is called Seq-Reduce test-program reducer, which only works for test pro-
grams generated by Csmith. Since test programs generated by Csmith are determined by a
sequence of integers produced by a pseudo-random number generator, the Seq-Reduce test-
program reducer iteratively generates the variant that still triggers the bug but is smaller
than the smallest variant produced previously, by randomly modifying the sequence.

• The second one is called Fast-Reduce test-program reducer, which also only works for test
programs generated by Csmith. It supports a series of transformation rules such as dead-
code elimination and exploiting path divergence. These rules are based on the information
of both the static structures of the generated test program and its runtime behaviors.
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• The third one is called C-Reduce, which works for any test program for C compilers. The
C-Reduce test program reducer applies a set of pluggable transformations performing op-
erations for reduction to a test program, until the test program cannot be reduced anymore
(i.e., reaching a global fixpoint). It is the most effective one among the three reducers for
reducing test programs triggering C compiler bugs. In particular, their experimental re-
sults demonstrate that the reduced test programs produced by C-Reduce are smaller than
those produced by their other two reducers (i.e., Seq-Reduce and Fast-Reduce) over 25× on
average.

Pflanzer et al. [94] further extend the C-Reduce test program reducer to OpenCL. That is, they
provide an automated approach to reducing OpenCL test inputs triggering bugs. The key challenge
is to detect undefined behaviors in an OpenCL kernel. To address this challenge, they build a new
plugin (called ShadowKeeper) for Oclgrind [95], which is able to precisely detect accesses to data
without initialization. In particular, the internal mechanics of the ShadowKeeper plugin borrow the
ideas of the Memcheck plugin in Valgrind [106] and MemorySanitizer in Clang [109].

The above-introduced reducers are specific to some single kind of test inputs (e.g., C programs or
OpenCL kernels). Herfert et al. [56] propose the generalized tree reduction algorithm, called GTR,
to reduce any test inputs that are tree-structured, such as Python and JavaScript. This approach
is independent of programming languages. Its input is a tree that has a property (e.g., to trigger a
specific compiler bug) that should be preserved during reduction. Its output is a tree that has been
reduced but still has the property. During the reduction process, GTR minimizes the whole tree by
considering all nodes at a level, and then continues to the next level for further reduction. More
specifically, GTR designs tree transformation rules and utilizes the delta debugging algorithm and
a greedy algorithm for backtracking. The designed tree transformation rules are the key part of
GTR, which performs reduction for a tree and then produces a new but smaller tree. In particular,
GTR provides two transformation rules: (1) removing a node and all its children; (2) replacing a
node with one of its children. Actually, GTR is easy to extend with additional transformation rules.
Furthermore, their experimental study also demonstrates that GTR significantly outperforms the
existing improved delta debugging algorithms [57, 84] for reducing tree-structured test inputs.

Sun et al. [113] propose another general framework, called Perses, for test program reduction.
Besides the above-mentioned tree-structured test inputs, it can be used to reduce other structured
test inputs, e.g., reducing structured text formats in the security domain. The key insight of Perses

is to take the formal syntax of a programming language as a guide for reduction. It ensures to
consider only smaller and syntactically valid program variants in each step of reduction so the
syntactically invalid program variants can be avoided and the corresponding efforts can be saved.

Holmes et al. [60] define the problem of slippage in test input reduction (including test program
reduction), which means that the bug triggered by a test input is different from that by the test input
after reduction. Slippage may be harmful or beneficial, since the bug triggered by the reduced test
input may be an already-known one or a new one. To avoid harmful slippage and induce beneficial
slippage, they propose to produce a set of reduced test inputs for a given bug-triggering test input,
instead of producing only one reduced test input. More specifically, they propose two approaches,
comb-block and multi-ddmin, based on the delta debugging algorithm ddmin [128, 129]. The former
blocks some components during delta debugging, while the latter randomizes the checking order
for smaller test inputs during delta debugging to produce a set of different reduced test inputs.

Christi et al. [33] investigate the impact of delta debugging for test input reduction (including
test program reduction) on spectrum-based bug localization that localizes bugs based on statistics
of coverage status of each program element during failing and passing executions [1, 121]. The
experimental results show the advantage of using reduced failing test inputs on spectrum-based
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bug localization compared with using original failing test inputs, indicating that it is necessary to
use delta debugging to reduce failing test inputs before spectrum-based bug localization.

6.2 Duplicated Bug Identification

Since random testing, or fuzzing, is one of the most important approaches to detecting compiler
bugs, those fuzzers suffer from a serious problem: A fuzzer may produce a large number of bug-
triggering test programs during the testing time of one night, and many of those test programs
actually trigger the same compiler bug. Such redundant bug-triggering test programs enhance
the debugging difficulty for developers, since compiler developers are expensive and limited in
numbers. In particular, the existing work [30] reports that some industrial compiler developers
stop using Csmith due to this problem. Therefore, it is necessary to identify such duplication before
reporting compiler bugs.

Chen et al. [30] formulate this problem as the fuzzer taming problem, which is that, given a
large number of bug-triggering test programs, it is essential to rank these test programs so the test
programs triggering distinct bugs are ranked at the early positions in the list. Moreover, there is
also an additional condition: If a test program triggering compiler bugs is marked as an undesirable
one previously, the test program should be ranked at the late position in the list. To tame compiler
fuzzers, Chen et al. [30] propose to distinguish test programs that trigger distinct compiler bugs
through defining a set of distance functions to measure the similarity between test programs (based
on a set of identified static and dynamic characteristics of test programs). It then ranks these test
programs based on the furthest point first algorithm, which iteratively selects the next test program
that has the maximum distance with the nearest one among all the existing selected test programs.
The key insight of this approach is that, if two test programs have a farther distance, then they
have a larger possibility to trigger two distinct bugs.

Holmes and Groce [59] further solve the fuzzer taming problem by proposing a mutation-based
metric to measure the similarity between two bug-triggering test programs. The key insight is
that, if two bug-triggering test programs become passing due to the same mutant of the compiler
under test, then they are more likely to trigger the same compiler bug. More specifically, they first
collect a set of mutants of the compiler under test and record which mutants make the test program
passing for each bug-triggering test program. Then, they calculate the Jaccard distance between
bug-triggering test programs based on the recorded information. Finally, they rank bug-triggering
test programs based on the furthest point first algorithm like Chen et al. [30] so the test programs
that are more likely to trigger different compiler bugs are ranked higher.

6.3 Compiler Bug Debugging

After receiving compiler bug reports, debugging these bugs is the next step, which is also important
and challenging [102].

Some work focuses on finding the bug-triggering part of a test program and the bug-triggering
condition to facilitate the debugging of compiler bugs. For example, Caron and Darnell [18] de-
velop a tool called Bugfind to debug compiler bugs, which can isolate modules (i.e., files) that are
not optimized correctly when multi-module projects are used as test programs. In particular, this
tool targets at optimizing compilers, which have one or more levels of optimization. Compared
to previously existing approaches, e.g., binary search by hand and semi-automated shell scripts,
the Bugfind tool is automated and requires minimal human intervention. Moreover, it finds the
failing modules in a minimal amount of time. To be specific, Bugfind first divides a failing multi-
module test program into small files that can be compiled separately, and then turns up or down
the optimization level for each file to find the files causing incorrect optimizations.
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Whalley [119] proposes a tool, called upoiso, to automatically identify the first transformation
within a function that causes incorrect results. In particular, this tool targets both optimization
bugs and non-optimization bugs in the upo compiler system. For optimization bugs, it utilizes the
binary search to identify the first transformation causing incorrect results by limiting the number
of transformations applied to a specified function. For non-optimization bugs, it utilizes the binary
search to identify the first function containing incorrect instructions by modifying the labels in
the native assembly files generated by a native compiler.

Besides, some work focuses on providing more sufficient execution information to facilitate the
debugging of compiler bugs. Sloane [102] proposes Noosa to debug the compilers that are gener-
ated using the Eli generation system. Noosa conducts the visualization for the compiler execution
when processing test programs. The aim of Noosa is to make the debugging process conduct at
the specification level. That is, it makes the implementation details of compilers be hidden, and
thus the compiler execution can be understood even if there is no knowledge about it.

Hemmert et al. [55] propose to debug the SC (short for Sea Cucumber) synthesizing compiler
at the source-code level. The synthesizing compilers make the debugging and verification of the
operation of the hardware applications harder. The proposed debugger conducts the mapping be-
tween the executing circuit state and the source code. Such an approach not only utilizes the high
efficiency of hardware, but also displays the messages of debugging at the original source code,
which is helpful for users to conduct fast debugging of the circuit.

Ogata et al. [91] propose to debug a Just-In-Time (JIT) compiler by replaying the compilation
based on two compilers. The approach is named replay JIT compilation. In particular, the first com-
piler used in the approach is the state-saving compiler, which is responsible to record all the run-
time information in a normal compilation. The second compiler is the replaying compiler, which
is responsible to replay the compilation in the debugging mode to output diagnostic information.

Chang et al. [20] propose to facilitate the debugging of native-code compilers in addition to
bytecode compilers by conducting the assembly-language level type checking. More specifically,
the assembly-language level checking is extended from the intermediate-language level checking.
The extension additionally maintains a lattice of dependent types, which actually enhances the
complexity of the approach. Even so, it provides the opportunity to debug native-code compilers
through the checking technique.

Furthermore, Holmes and Groce [59] propose to utilize the mutation-based metric presented in
Section 6.2 to help localize compiler bugs. The localization technique is called Repair. For a bug-
triggering test program, Repair calculates a score for each mutant that makes the test program
passing, and then ranks these mutants so the statements changed by the mutants ranked higher
are more likely to be suspicious. The key insight is that, if a mutant can only make the bug-
triggering test programs—which are similar to the given bug-triggering test program based on the
mutation-based metric, passing—the mutant should be ranked higher. More specifically, the score
of a mutant is calculated based on the maximum distance between the given bug-triggering test
program and other bug-triggering test programs that the mutant makes passing.

Recently, Chen et al. [25] propose an approach, called DiWi, to localizing compiler bugs by
transforming the problem of compiler bug localization into a search problem, i.e., searching for
a set of effective witness test programs that are able to eliminate innocent compiler files from
suspects (the compiler files involved when compiling the failing test program). More specifically,
DiWi designs a set of witnessing mutation rules and proposes a heuristic-based search strategy to
generate such a set of effective witness test programs based on a given failing test program. Then,
DiWi isolates compiler bugs by comparing the coverage between the set of witness test programs
and the given failing test program following the practice of spectrum-based fault localization [2].
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7 EMPIRICAL STUDIES ON COMPILER TESTING

In addition to developing new approaches that address technical challenges, the compiler testing
research field is benefiting from several empirical studies. These studies systematically explore
compiler bugs and compiler testing approaches, providing insights on compiler testing.

Chen et al. [26] conduct a comparison study on three mainstream compiler testing approaches,
including randomized differential testing (abbreviated as RDT), different optimization levels (ab-
breviated as DOL), and equivalence modulo inputs (abbreviated as EMI) [72]. Here, RDT refers to
the approach testing compiler using the cross-compiler strategy, whereas DOL refers to that using
cross-optimization strategy. To compare them precisely, they propose Correcting Commits, a novel
measurement that searches for the commits correcting the detected bugs and uses such commit
number to estimate the bug number. They prepare a fixed sequence of test programs generated
by Csmith and apply them to GCC and LLVM, respectively, recording compiler bugs (measured
by Correcting Commits) revealed by each approach during 90 hours. Following this experimental
methodology, this study gets some findings. For example, DOL performs the most effective on the
bugs related to compiler optimizations, RDT performs the most effective on the bugs not related
to optimizations, and EMI complements them due to its effectiveness on detecting unique bugs.
Moreover, the study investigates the factors impacting a compiler testing approach, including its
efficiency, its used test oracle, and kind of test programs. They find each of the factors significantly
impacts a compiler testing approach. In particular, the efficiency of the approach has the most im-
pact, while the impact of the kind of test programs is the least. Besides, this study also discusses
the combination of these approaches and suggests their usage order to be DOL, RDT, and EMI.

Lidbury et al. [77] perform an experimental study to investigate the effectiveness of RDT and
EMI on a new application, i.e., OpenCL compilers. To apply RDT to OpenCL compilers, they build a
tool calledCLsmith usingCsmith [123] to randomly generate test programs (i.e., OpenCL kernels)
for OpenCL compilers. In particular, CLsmith provides several strategies for the random gener-
ation. Moreover, to apply EMI to OpenCL compilers, they propose to first inject dead code into
OpenCL kernels and then apply the EMI technique (i.e., Orion [72]) to generate equivalent vari-
ants. Based on the two testing approaches, they apply inputs randomly generated by CLsmith to
four versions of OpenCL in its 21 configurations (differ in devices and drivers), recording bugs
revealed in a specified time-out. According to the empirical study, more than 50 OpenCL compiler
bugs are identified and reported, most of which are in commercial implementations.

Sun et al. [112] conduct an empirical study to investigate the characteristics of compiler bugs,
aiming to facilitate the understanding of compiler bugs. In particular, they study GCC revisions
from August 1999 to October 2015 and LLVM revisions from October 2003 to October 2015 and
choose the revision that is a fix to a bug based on its commit message. Through this process,
this work collects 39,890 GCC bugs and 12,842 LLVM bugs. Based on the two bug repositories,
this study investigates four important aspects of compiler bugs, including where the bugs occur,
which characteristics the test programs triggering bugs and bug fixes have, how long the bugs
can be detected and fixed, and what the cases of bug priorities are. Based on their results of the
four aspects, they get some findings. First, the component processing C++ programs is the most
buggy one, which should attract more research attention. Second, the test programs triggering
bugs usually have a small size, indicating that we should produce small but complex test programs
for compiler testing. Third, the fixes of bugs tend to involve only one file, and the size of these
fixes tend to be small, indicating that we can conduct testing for a specific component. Finally,
debugging the bugs usually takes a few months due to the complexity of compilers.

Groce et al. [50] conduct an empirical study to investigate the relationships between what a
test program contains and what the compiler does in testing. They first define “triggers” and
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“suppressors,” where the former means that certain test-program features can make a test program
more likely to explore some compiler behaviors (such as bugs and coverage entities) in testing,
while the latter means that certain test-program features can make a test program less likely to ex-
plore some compiler behaviors. In particular, this study focuses on investigating how test-program
features can suppress a compiler behavior, including the frequency and degree of “suppressors”
in compiler testing. The study demonstrates that suppressors are quite common, and many fea-
tures of test programs act as suppressors for some compiler behaviors in testing. They further
discuss the causes and impacts of “suppressors.” For example, some test-program features acting
as suppressors have to be omitted in test programs to increase the probability of triggering some
bugs.

8 OUTLOOK AND CHALLENGES FOR FUTURE WORK

Although significant progress has been made in the area of compiler testing, the problem is far
from being solved. In this section, we highlight some challenges that future work may address.

Efficiency of Compiler Testing. Though some efforts have been made to enhance the effi-
ciency of compiler testing, compiler testing is still a time-consuming task. Further efforts are still
needed to enhance the efficiency of compiler testing.

One efficiency bottleneck is that a bug is often discovered multiple times by different test pro-
grams in compiler testing. This causes not only an efficiency problem but also a large amount
of extra work for developers to review and classify the duplicated test programs. It would be de-
sirable to have an approach that generates test programs triggering only new bugs, possibly by
using the feedback from known bugs-inducing test programs. Chen et al. [23] have shown that
by extracting feature vectors from existing test programs, better prioritization of test programs
can be achieved. Such approaches may be integrated into the generation process to enhance test
efficiency. Similarly, Chen et al. [22] have shown that learning from existing bug-inducing test
programs could help us to recognize future bug-inducing test programs for test program prioriti-
zation. Such approaches may also be integrated into test generation to directly generate programs
that have larger possibilities to trigger bugs.

Compiler Verification. Compiler verification is another family of attempts to eliminate bugs
in compilers [36, 76]. However, due to the high cost of developing formal specifications and proofs,
verification techniques usually can be applied only to a small part of compilers and guarantee a se-
lection of properties. How testing can complement verification may be another research direction,
where the focus could be the parts of a compiler that have not been verified.

Generalizability of Approaches. Though tremendous progress has been made in automating
compiler testing, most of these efforts are specific to one particular programming language. In par-
ticular, many existing approaches are specific to C. For example, one of the most widely used tools
for test program generation, Csmith [123], is designed only for generating C programs. Migrating
such tools to other programming languages is not easy. Csmith has been carefully designed so no
program triggering undefined behaviors will be generated, and a bunch of static analysis has been
integrated into the generation process to prevent such programs. To migrate such tools to other
languages, we need to carefully understand the rules for valid programs in other programming
languages and design static analyses to best approximate such rules at generation time. These
tasks require expert knowledge in program analysis and semantics and are not easy to perform.
Therefore, future research could focus on providing approaches that can be generalized to different
compilers: For example, by allowing easy specification of valid programs or by deriving specifica-
tions automatically from compilers, and deducing generation procedures from the specifications.
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Recent work on learning-based test program generation [4, 8, 93], which can be easily applied to
different programming languages, is the first step in that direction.

Another related problem is whether the current approaches can generalize to other software
systems that also take programs as inputs, such as refactoring tools [35], debuggers [75, 116],
static bug detectors, code search engines, and so on. More research is required to understand the
difference between these tools and compilers and what approaches could be generalized.

Coverage of Bugs. Current automatic approaches for constructing test programs and test or-
acles can only cover a subset of all possible test programs and oracles, therefore covering only a
subset of bugs among all compiler bugs. In test program generation, to generate only valid pro-
grams without undefined behaviors, tools like Csmith [123] rely on static analysis to approximate
the boundary of a valid program, and thus cannot generate all valid programs. Also, some bugs
may require invalid programs to trigger them. Similarly, the automatic oracles mainly rely on
equivalence relations between programs/compilers, and thus cannot be used to discover bugs that
require oracles beyond equivalence relations.

Therefore, future studies are needed to understand test programs and test oracles beyond the
current spaces. While generating invalid programs is easy, understanding which invalid programs
are likely to trigger bugs may not be easy. Programs with undefined behaviors or non-deterministic
behaviors could also be taken into account. In the space of test oracles, we may consider relations
that are not equivalence relations. For example, when optimizing the program size, the program
size should become smaller than that before optimization.

Handling the Discovered Bugs. While a lot of research efforts have been put into discovering
bugs, the processing of test results has received relatively little attention. Here, we highlight some
challenges in bug handling.

One of the open challenges is which test programs should be brought to compiler developers. As
mentioned before, existing research [30] has studied how to identify test programs that trigger the
same compiler bug. However, even with these approaches, redundant test programs still exist and
more studies are needed to understand whether they can be further reduced. A similar problem is
the prioritization of bug reports. In early development stages of a compiler, a testing process may
produce many bugs—how to prioritize the bugs and report to developers remain open problems.

Another challenge is the readability of test programs. While several attempts [97] have been
made to reduce test programs, smaller programs do not necessarily mean better readability. How
to model readability and how to achieve better readability are problems left to be solved.

Due to the complexity of compilers, fixing compiler bugs is not easy. Recently, significant
progress has been made in automatic program repair. Can compiler bugs be repaired automati-
cally? Can existing repair approaches be applied to compilers? Additional research is needed here
to answer these questions.

Benchmarks. Currently, there is no established benchmark of compiler bugs for evaluating
the effectiveness of compiler testing. Existing studies often spend huge efforts to discover bugs
in existing compilers during their evaluation [22, 26]. Agreeing on a common benchmark could
further promote the development of compiler testing research. A benchmark makes it much easier
to measure the effectiveness of a newly proposed compiler testing approach.

9 CONCLUSION

This article provides a survey of approaches for testing compilers. Given the importance of com-
pilers as a basic part of every developer’s tool chain and the disastrous consequences of compiler
bugs, testing compilers is an extremely important topic. Recent years have seen significant im-
provements and activities in the field of compiler testing. Our article enables interested outsiders
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to obtain an overview of this thriving field and may enable experts to fill any gaps in their knowl-
edge of the state-of-the-art. Based on our discussion of existing work, we conclude compiler testing
has evolved into a mature field that has already made significant impacts on real-world compiler
development.

Despite all the advances on compiler testing, there remain several interesting challenges to be
addressed in the future, including how to generalize existing approaches and how to further im-
prove both their effectiveness and efficiency. We hope that our survey allows researchers to make
progress towards these goals.
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