
How Incidental are the Incidents? Characterizing and
Prioritizing Incidents for Large-Scale Online Service Systems

Junjie Chen∗
College of Intelligence and

Computing, Tianjin University
Tianjin, China

junjiechen@tju.edu.cn

Shu Zhang
Microsoft Research

Beijing, China
v-shuzh@microsoft.com

Xiaoting He
Microsoft Research

Beijing, China
v-xiah@microsoft.com

Qingwei Lin†
Microsoft Research

Beijing, China
qlin@microsoft.com

Hongyu Zhang
The University of Newcastle

Callaghan, Australia
Hongyu.Zhang@newcastle.edu.au

Dan Hao
Peking University
Beijing, China

haodan@pku.edu.cn

Yu Kang
Microsoft Research

Beijing, China
kay@microsoft.com

Feng Gao
Microsoft Azure
Redmond, USA

fgao@microsoft.com

Zhangwei Xu
Microsoft Azure
Redmond, USA

zhangxu@microsoft.com

Yingnong Dang
Microsoft Azure
Redmond, USA

yidang@microsoft.com

Dongmei Zhang
Microsoft Research

Beijing, China
dongmeiz@microsoft.com

ABSTRACT
Although tremendous efforts have been devoted to the quality as-
surance of online service systems, in reality, these systems still
come across many incidents (i.e., unplanned interruptions and out-
ages), which can decrease user satisfaction or cause economic loss.
To better understand the characteristics of incidents and improve
the incident management process, we perform the first large-scale
empirical analysis of incidents collected from 18 real-world online
service systems in Microsoft. Surprisingly, we find that although a
large number of incidents could occur over a short period of time,
many of them actually do not matter, i.e., engineers will not fix
them with a high priority after manually identifying their root
cause. We call these incidents incidental incidents. Our qualitative
and quantitative analyses show that incidental incidents are signifi-
cant in terms of both number and cost. Therefore, it is important to
prioritize incidents by identifying incidental incidents in advance
to optimize incident management efforts. In particular, we pro-
pose an approach, called DeepIP (Deep learning based Incident

∗This work was mainly done when he was visiting Microsoft Research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416624

Prioritization), to prioritizing incidents based on a large amount of
historical incident data. More specifically, we design an attention-
based Convolutional Neural Network (CNN) to learn a prediction
model to identify incidental incidents. We then prioritize all in-
cidents by ranking the predicted probabilities of incidents being
incidental. We evaluate the performance of DeepIP using real-world
incident data. The experimental results show that DeepIP effectively
prioritizes incidents by identifying incidental incidents and signifi-
cantly outperforms all the compared approaches. For example, the
AUC of DeepIP achieves 0.808, while that of the best compared
approach is only 0.624 on average.

CCS CONCEPTS
• Software and its engineering→Maintaining software.

KEYWORDS
Incidents, Online Service Systems, Prioritization

ACM Reference Format:
Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan
Hao, Yu Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei
Zhang. 2020. How Incidental are the Incidents? Characterizing and Priori-
tizing Incidents for Large-Scale Online Service Systems. In 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’20), Sep-
tember 21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3324884.3416624

1 INTRODUCTION
In recent years, online service systems, such as Microsoft Azure
and Office 365, have been widely used by millions of users around

https://doi.org/10.1145/3324884.3416624
https://doi.org/10.1145/3324884.3416624

ASE ’20, September 21–25, 2020, Virtual Event, Australia J. Chen et al.

the world. To assure their quality, practitioners put dedicated ef-
forts [10–12, 26, 29, 35, 36, 46, 53–55], but such online service sys-
tems still encounter many incidents (i.e., unplanned interruptions
and outages). These incidents can decrease user satisfaction or
cause serious economic loss. For example, the one-hour downtime
for Amazon.com on Prime Day in 2018 (its biggest sale event of
the year) caused the loss of up to $100 million [2]. Therefore, high
availability and reliability are essential to online service systems.

Once an incident occurs to an online service system, it needs to
be mitigated as soon as possible so as to reduce the loss caused by
the incident [10, 29]. However, an online service system is quite
complex, i.e., involving many components such as hardware, virtual
machines, network, and database, and in the meanwhile all these
components can lead to incidents in the daily operation of the
system. Therefore, incidents tend to occur frequently in practice.
Moreover, the number of engineers, who are responsible to deal
with incidents, and computing resources is limited, and the cost
spent on incident management is considerable. Therefore, it is
scarcely possible to mitigate every incident timely. To reduce the
impacts of incidents as much as possible, intuitively, one of the most
cost-effective solutions is to deal with more important incidents
earlier. That is, it is necessary to prioritize incidents for engineers
to optimize the incident management process.

To achieve the goal of incident prioritization, we first need to
understand what high-priority incidents and low-priority incidents
are. However, to date, there lack extensive studies on incidents.
Therefore, we perform the first empirical analysis for incidents of
18 real-world online service systems in Microsoft, including many
worldwide popular systems. For each system, we collect incident
data over a six-month period. Indeed, there are a large number of
incidents reported over a short period. For example, for Service
X there are nearly 3,000 incidents per time unit1. However, many
of them actually are not important, i.e., they do not really affect
customers and engineers will not fix them with a high priority
after they manually find the reasons why the incidents occur. In
this paper, we call these incidents incidental incidents. In contrast,
we call the remaining incidents essential incidents.

More specifically, since essential incidents can be caused by a
variety of factors (e.g., various source code bugs and hardware fail-
ures), it is difficult to characterize them thoroughly. Here, we aim
to prioritize incidents from the opposite direction, i.e., identifying
incidental incidents and then putting them in the end. Therefore,
we conduct a qualitative analysis to characterize incidental inci-
dents. We find that the incidents fall into several categories. Also,
we conduct a quantitative analysis to investigate the impacts of
incidental incidents. We find that for 15 out of 18 studied systems,
the percentage of incidental incidents is more than 30% and the
percentage of maintenance time spent on incidental incidents is
also more than 30%! The results demonstrate that a large number
of engineers’ efforts were spent on incidental incidents, which can
largely delay the mitigation of really important incidents. Those
also empirically motivate the necessity of incident prioritization.

Further, in this paper we propose a deep-learning based approach,
calledDeepIP (Deep learning based Incident Prioritization), to pri-
oritizing incidents by identifying incidental incidents based on a

1Due to the company policy, we hide the time unit and service name.

large amount of historical incident data. In particular, there are
two main challenges in the problem: 1) which features are help-
ful to identify incidental incidents; 2) how to effectively utilize
these features to identify incidental incidents. For the first chal-
lenge, our empirical study provides some guidelines on effective
features and helps us identify three types of features, i.e., textual
descriptions (i.e., title and summary of an incident report), special
terms (e.g., API names and component names occurring in an inci-
dent report), and incident-occurring environment information (e.g.,
incident-occurring device). To overcome the second challenge, we
draw support from deep learning. Since the features we used are
mainly textual information, deep learning can achieve semantic
understanding of natural-language descriptions and outperform
traditional machine learning algorithms, as demonstrated by ex-
isting studies [10, 16]. More specifically, we design a CNN-based
deep neural network and incorporate an attention mechanism. The
incidental incidents can be predicted by the attention-based CNN
model. Then, we prioritize all the incidents based on the ascend-
ing order of the predicted probabilities of being incidental. In this
way, engineers can optimize the incident management process by
handling the incidents ranked higher first.

To investigate the effectiveness of our approach DeepIP, we con-
duct an extensive evaluation using real-world incident data from
Microsoft (the same data as the one used in the empirical study).
The results demonstrate that DeepIP is able to effectively and effi-
ciently prioritize incidents for large-scale online service systems,
and significantly outperform all the compared approaches in the
area of software bug severity prediction2. For example, the average
AUC (measuring the accuracy that essential incidents are ranked
higher than incidental incidents) of DeepIP is 0.808, while that
of the best compared approach is just 0.624. The results demon-
strate that as the first attempt to solve the practical problem of
incident prioritization, our deep-learning based approach DeepIP
is indeed promising. Our study results also show that each type of
features (i.e., special terms and incident-occurring environments)
can significantly improve the effectiveness of DeepIP, confirming
the contributions of each of them. In particular, the practical value
of DeepIP has been appreciated by engineers in Microsoft.

The major contributions of the paper are as follows:
• We perform the first large-scale empirical study on incidents
of 18 real-world online service systems, characterizing inci-
dents qualitatively and quantitatively.

• We propose the first approach to prioritizing incidents by
identifying incidental incidents, in order to optimize the
incident management process.

• We conduct an extensive study to evaluate the performance
of DeepIP based on real-world incident data of 18 large-
scale online service systems. Our results show that DeepIP
significantly outperforms all the compared approaches.

2 BACKGROUND
In this section, we introduce the background of incidents and inci-
dent management (IcM) for online service systems in practice.

2Since there is no existing incident prioritization approach for online service systems,
we adapt the typical approaches of traditional software bug severity prediction for
comparison in our study.

How Incidental are the Incidents? ASE ’20, September 21–25, 2020, Virtual Event, Australia

Online Service

System

Auto
alert

Manual
report

IcM System

TeamTeam

Incident

Reporting

Calling

Incident

Triage
Incident Mitigation

Incident Resolution

Incident status

update

OCEs

Figure 1: Workflow of Incident Management

Figure 1 shows the workflow of IcM for large-scale online service
systems in Microsoft. The IcM consists of four stages. The first stage
is incident reporting. In an online service system, a large number of
monitors are used to watch for some key performance indicators
(e.g., latency and network status). Most incidents are actually re-
ported by various monitors automatically, which is different from
the manual reporting of traditional software bugs. In particular, a
monitor automatically reports an incident to the IcM system when
some predefined anomalous conditions are met. Besides, engineers
could observe incidents during their daily operation, and thus they
could also report incidents manually to the IcM system. After an
incident is reported to the IcM system, the IcM system first makes
a phone call to a set of On-Call Engineers (OCEs) to trigger the
investigation process of the incident. Ideally, the OCEs can directly
identify the root cause and then mitigate the incident based on the
information in the incident report. However, in most cases they
cannot find the root cause within a short time. Therefore, the OCEs
have to assign the incident to a team that they think is the most
suitable to handle it, which is the second stage incident triage. The
third stage is incident mitigation. When the incident is assigned
to the correct team, the engineers in the team begin to diagnose
the problem and then take all necessary actions to mitigate the
incident (e.g., reboot the server or replace failure hardware). After
mitigation, the engineers further analyze the underlying root cause
of the incident through offline postmortem analysis, and finally
completely resolve the incident, which is the last stage incident res-
olution. Moreover, the engineers update the status (e.g., mitigated
or resolved) of an incident in the IcM system.

Incident mitigation should be timely since long Time To Miti-
gate (TTM) could lead to poor service availability and cause huge
financial loss. However, it is often costly for engineers to manu-
ally mitigate an incident due to the complexity and scale of the
system. Considering the large number of incidents as well as the
limited number of engineers and computing resources, it is essen-
tial to handle more important incidents earlier. However, to our
best knowledge, none of existing work has studied the priority and
influence of incidents before. Therefore, in this paper, we conduct
the first extensive study to characterize incidents (presented in
Section 3), and further propose an effective approach to prioritizing
incidents to optimize the incident management process (presented
in Section 4).

3 AN EMPIRICAL STUDY OF INCIDENTS
To better understand the priority and influence of incidents for large-
scale online service systems, we conduct the first extensive study
on real-world incidents. As presented in Section 1, in this study, we
aim to understand the characteristics of incidental incidents. Based
on the identification of the incidental incidents, we can prioritize
incidents by putting the incidental incidents in the end. Here, we
target at the following research questions:

• RQ1: Which incidents are incidental in large-scale online ser-
vice systems?

• RQ2: What is the percentage of incidental incidents?
• RQ3: What is the cost spent on incidental incidents?
• RQ4: Is the current incidentmanagement practice good enough?

RQ1 is qualitative analysis to investigate “what are incidental
incidents”, while the other RQs are quantitative analysis to study
incidental incidents in terms of number and cost. In particular, RQ4
aims to explore whether the current practice of incident manage-
ment is sufficiently good from the view of incident priority.

3.1 Subjects
We used 18 large-scale online service systems in Microsoft as sub-
jects. These subjects include many worldwide popular products
and are used by millions of users worldwide. All the 18 systems are
in different application areas and developed by different product
groups, indicating the diversity of subjects. For each online service
system, we collected real incident data over a six-month period.
The size of all the collected incident reports is up to 4.2GB. The
total number of monitors used to monitor these systems is more
than 80K. Due to the policy of Microsoft, we hid some details such
as the specific time period for incident collection and the specific
number of collected incidents.

3.2 RQ1: Qualitative Analysis
After diagnosing an incident, engineers tend to manually record
whether the incident needs to be fixed with a high priority, and
give a simple explanation for the incident in the IcM system. If the
incident indeed needs to be fixed with a high priority (i.e., it is an
essential incident), engineers also record the fixing steps. That also
means, although an incident is an incidental incident, engineers still
have to spend time and resources on diagnosing the reason why it
occurs, and finally find that it actually is an incidental one. With
the help (i.e., manual recording) of engineers, incidental incidents
can be divided into six categories: by design, customer error, won’t
fix, unable to reproduce, transient, and false alarm. We analyze each
category of incidental incidents in the following.

3.2.1 By Design. The incidents belonging to this category are pro-
duced intentionally, and do not need to be dealt with. This category
of incidents tends to have the purpose of testing. One of such in-
cidents is shown in Example 1. According to the title (one line
description) of the incident report and the explanation given by the
engineers who diagnosed the incident, obviously, this incident is
an intentional incident for testing OData API. The occurrences of
this category of incidents are as expected, and thus they should be
assigned low priority in practice.

ASE ’20, September 21–25, 2020, Virtual Event, Australia J. Chen et al.

Example 1:

Incident: TestIncident2018-10-23T00:06:36Z.
Explanation: OData API Test.

3.2.2 Customer Error. This category of incidents is caused by cus-
tomer errors rather than the problems of online service systems.
In other words, customers misuse the systems or incorrectly con-
figure the systems, causing the occurrences of the incidents. For
example, as shown in Example 2, the incident is that sending email
notification failed. However, the cause for this incident was that the
inbox of the customer was full. Similarly, in Example 3, the cause for
the incident “badge preview missing at DSM” was that the DYMO
driver was not correctly installed by customers. This category of
incidents can be directly handled by the technical supporters, and
thus do not need to notify engineers.

Example 2:

Incident: Failed to send email notification on Tenant:
022d9fca-60a3-4aac-9a90-c18e51ac527e at Frequency: Daily.
Explanation: Inbox is full - insufficient storage error.

Example 3:

Incident: Badge Preview Missing at DSM.
Explanation: Customer installed DYMO driver and resolved
the issue.

3.2.3 Won’t Fix. The incidents belonging to this category are real
incidents, but they tend to occur at the parts that are out-of-date
(i.e., not maintained anymore). Therefore, it is not worth taking the
engineers’ efforts to solve them. As shown in Example 4, engineers
think that it is not necessary to solve the incident “node service
stuck in crash loop”, since the occurring part of the incident has
been deprecated.

Example 4:

Incident: Node service stuck in crash loop on BR1-NNS207.
Explanation: Deprecated fabric.

3.2.4 Unable to Reproduce. The incidents belonging to this cate-
gory are not able to be reproduced during diagnosis. In this case, it
is hard to say whether they are real incidents, and it is scarcely pos-
sible to check whether we can solve them successfully. Therefore,
even if the incidents are reported, they have to be ignored.

3.2.5 Transient. This category of incidents is real things but they
can be automatically recovered. These incidents tend to be caused
by other operations/factors. When these operations/factors are
corrected/eliminated, the incidents can be automatically resolved.
Therefore, it should be low-priority for engineers to look into
these incidents. For example, as shown in Example 5, the test
EndToEndDataPushAndPull was not executed during a period of
time. Actually, it was caused by another factor, which is that the
corresponding machines have not been completely rebooted at that
time. When the machines finished rebooting, the test would run.
Similarly, in Example 6, the incident occurred, since the “msf Forest”

was still at the stage of deployment. After the deployment finished,
the incident was automatically resolved accordingly.

Example 5:

Incident: WestCentralUS: GIP2 test EndToEndDataPushAnd-
Pull didn’t execute at least once during the last 14:00:00 min-
utes.
Explanation: The argo was down because the machines took
long time to reboot (ntdev texas password was changed). Argo
is up now and tests are running.

Example 6:

Incident: RED ALERT: System Level Issue Detected in msf
Forest.
Explanation: Transient issue due to deployments. There are
no users in this forest and server is not member of any DAG.

3.2.6 False Alarm. The incidents belonging to this category are
actually not real incidents. They tend to be caused by the problems
of monitors. For example, as shown in Example 73, this incident
is a false alarm, and the real cause lay in the monitor reporting
the incident. More specifically, the data was updated every three
minutes but the monitor checked every one minute, and thus the
monitor reported the incident “refresh time exceeded threshold”.
However, the incident was actually due to the sensitive monitor
(improper threshold). That is, this category of incidents should not
be investigated by engineers, since they are not real incidents.

Example 7:

Incident: DS002 (MDM): Refresh time of delta store "Stor-
ageAccountName":"xtlcsuse", "∗∗TableName":"DeltaStore",
"Name":"envindex" exceeded threshold.
Explanation: MDM was configured for this at a threshold
of 1 minute but the new code is at 3 minutes. We did not
get enough 3 minute outages to trigger this, so this is a false
alarm.

3.3 RQ2: Percentage of Incidental Incidents
We investigated the percentage of incidental incidents in online
service systems, whose results are shown in Figure 2. In this figure,
the value above each bar represents the percentage of incidental in-
cidents among all the incidents for the corresponding subject. From
this figure, we find that the percentage of incidental incidents for
all the 18 studied systems is significant, which ranges from 11.92%
to 71.43%. The average percentage of them is up to 50.32%. That is,
more than half of incidents are actually incidental, indicating that
a great deal of engineers’ efforts were spent on these low-priority
incidents during historical diagnosis. Therefore, it is quite neces-
sary to understand and then prioritize incidents for online service
systems. In particular, we investigated why S9 has the smallest rate,
and found that the number of monitors used for checking S9 is the
smallest, which may lead to many incidents that cannot be reported
and hard to capture complex interactions among components.

3We use ∗∗ to replace some words due to the company policy.

How Incidental are the Incidents? ASE ’20, September 21–25, 2020, Virtual Event, Australia

34.03
38.09

71.05

61.61

16.9

55.91

62.35

38.17

11.92

29.3

45.3

59.56
62.4 62.41

65.83
70.25

49.27

71.43

0

20

40

60

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18

Pe
rc

en
ta

ge
 o

f t
riv

ia
l i

nc
id

en
ts

 (%
)

Pe
rc

en
ta

ge
 o

f i
nc

id
en

ta
l i

nc
id

en
ts

 (%
)

Figure 2: Percentage of incidental incidents

Won't Fix
11.03%

Transient
54.46%

False Alarm
16.19%

By Design
12.86%

Unable To Reproduce
3.18%

Customer Error
2.28%

Figure 3: Percentage of each category of incidental incidents

We further investigated the percentage of each category of inci-
dental incidents, whose results are shown in Figure 3. The numbers
in this figure represent the average percentage of the correspond-
ing category of incidental incidents on the 18 studied systems. In
this figure, we find that the percentages of “Customer Error” and
“Unable to Reproduce” are small, while the percentage of “Tran-
sient” is large. The large percentage (i.e., 54.46%) for “Transient”
is as expected, since there exist many interactions among various
components in a large-scale online service system. When one com-
ponent is abnormal, the components interacting with it are likely
to report incidents that are caused by the first abnormal one, which
may lead to many “Transient” incidents.

3.4 RQ3: Effort Spent on Incidental Incidents
We explored the effort spent on incidental incidents in terms of
TTR (Time to Resolve). TTR refers to the time period from incident
creation to incident resolution. Figure 4 shows the percentage of
TTR spent on incidental incidents for each online service system.
From this figure, we can see that the percentage of TTR spent on
incidental incidents is significant, ranging from 10.57% to 76.72%.
The average percentage is up to 55.05%. That is, the cost spent on
incidental incidents is almost the same as that spent on essential
incidents in terms of TTR, which may delay the resolution of essen-
tial incidents and thus result in greater economic loss. We also find
that for 15 out of 18 studied systems, the percentage of resolution
time spent on incidental incidents is more than 30%. These results
further motivate the necessity of understanding and prioritizing
incidents for large-scale online service systems.

We further explored the TTR spent on each category of incidental
incidents. We first calculated the average TTR of each category

53.46
55.92

73.8
69.64

10.57

38.97

26.06

70.66

19.56

43.81

34.21

66.96
71.45

63.33

74.0774.15

67.59

76.72

0

20

40

60

80

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18

Pe
rc

en
ta

ge
 o

f T
TM

 s
pe

nt
 o

n
tr

iv
ia

l i
nc

id
en

ts
 (%

)
Pe

rc
en

ta
ge

 o
f T

TR
 s

pe
nt

 o
n

in
ci

de
nt

al
 in

ci
de

nt
s

(%
)

Figure 4: Percentage of TTR spent on incidental incidents

●

●

●

●

●

●

●
●

●

●

By Design Customer Error Won't Fix Unable To Reproduce Transient False Alarm

Av
er

ag
e

TT
M

Av
er

ag
e

TT
R

Figure 5: Distribution of TTR

of incidental incidents for each studied system, and then showed
the average TTR distribution across all the subjects in Figure 5.
Due to the policy of Microsoft, we hid the specific time and its
unit. In Figure 5, the violin plots show the density of average TTR
at different values, and the box plots show the median and inter-
quartile ranges. Among all these categories of incidental incidents,
the median of average TTR for “Unable to reproduce” is the largest.
The reason could be that developers spent long time trying to
reproduce these incidents but failed.

3.5 RQ4: Investigation of Incident
Management Practice

The current incident management practice in Microsoft is that
engineers investigate the reported incidents based on the number
of potentially impacted customers, which is estimated according
to the region/cluster where the incidents occurred. Based on the
number of potentially impacted customers, there are five levels of
incidents in Microsoft, i.e., 0 ∼ 4, where 0 refers to the highest level
and 4 refers to the lowest levels. However, in the current practice
engineers may still investigate some incidental incidents first since
these incidents have larger estimated impacts, which is harmful
to incident management of systems. Therefore, we explored the
distribution of incidents at each level to investigate whether the
current practice is good enough.

Table 1 shows the distribution of incidents at each level. In this
table, Rows 2-7 present the distribution of each category of inci-
dental incidents at each level across all the studied systems. Rows
8 and 9 summarize the overall distribution of incidental incidents
and essential incidents at each level. From this table, we can see

ASE ’20, September 21–25, 2020, Virtual Event, Australia J. Chen et al.

Table 1: Distribution of incidents at each level

Severity 0 (%) 1 (%) 2 (%) 3 (%) 4 (%)
By Design 13.52 5.06 3.54 4.70 6.77
Customer Error 0.00 0.45 0.41 0.67 1.73
Won’t Fix 2.96 6.43 6.74 3.20 6.41
Unable To Reproduce 0.00 0.83 2.28 0.64 2.47
Transient 30.37 9.25 23.04 21.62 21.36
False Alarm 11.11 3.75 6.22 5.55 8.84
Incidental Incidents 57.96 25.77 42.23 36.38 45.57
Essential Incidents 42.04 74.23 57.77 63.62 52.43

that at each level, there are both incidental incidents and essential
incidents, and their rates are relatively similar. That is, there are
indeed many incidental incidents that are assigned with a higher
level than actual essential incidents. Even at the highest level, the
percentage of incidental incidents (i.e., 57.96%) is larger than that
of essential incidents (i.e., 42.04%). That indicates, many inciden-
tal incidents were actually investigated preferentially, causing the
waste of engineers’ efforts. Therefore, the current incident man-
agement practice should be further improved, and one promising
direction is to prioritize incidents by identifying essential incidents
and incidental incidents.

4 INCIDENT PRIORITIZATION
During the incident management process, a huge amount of labeled
incident data is accumulated. Each incident is reported along with
various information such as the symptom description and occurring
environment. The abundance of data provides an opportunity to
automatically identify whether an incident is incidental or essential.
Here, we treat the problem of identifying incidental incidents as a
supervised classification problem, which can produce a probability
of an incident being incidental. Then, all incidents can be prioritized
based on the ascending order of the predicted probabilities. In this
way, engineers can handle the incidents based on the priorities and
the incident management process could be improved.

Here, we propose a deep-learning based approach, calledDeepIP,
to prioritizing incidents by identifying incidental incidents. Figure 6
shows the overview of DeepIP. We identify three types of features
to help predict incidental incidents based on the guidelines acquired
from the empirical study (Section 4.1). Also, we design a CNN-based
deep neural network and incorporate an attention mechanism to
effectively utilize these features for the identification of incidental
incidents (Section 4.2). Here, we draw support from deep learning,
since the features we used are mainly textual information, and deep
learning can achieve semantic understanding of natural-language
descriptions and has been demonstrated to outperform traditional
machine learning algorithms [10, 16].

4.1 Feature Identification
When an incident is reported, it is provided with the textual descrip-
tion about the symptom, i.e., the title and summary of the incident
report. The textual description is the core information about an
incident, which can directly reflect the incident to some degree, and
thus it could be helpful to distinguish whether the incident is essen-
tial or incidental. Besides, from Section 3 and the existing study [10],
many incidents are actually correlated in a system. For example,
an incident in one component of a system could cause a series of

incidents in other components of the system. Also, an incident may
be continuously reported several times, since monitors check the
status of a system regularly. “Transient” incidents are also related to
incident correlations. For ease of presentation, we call the incident
to be predicted target incident and the incidents correlated with it
relevant incidents. The relevant incidents are helpful to predict the
target incident. Therefore, we consider the textual descriptions of
both the target incident and its relevant incidents in DeepIP. As
the relevant incidents tend to be reported at close time [10] with
the target incident, we identify them by setting a time window and
collecting the incidents whose reporting time is within the window
and before the time of the target incident. In summary, the first type
of features used in DeepIP is the textual descriptions in both the target
incident report and its relevant incident reports.

Based on the observations in Section 3, most of incident reports
include special terms, such as API names and component names,
and many of them are helpful to identify incidental incidents. For
example, as shown in Example 4, “BR1-NNS207” was deprecated,
and thus this incident did not need to resolve, belonging to “Won’t
Fix”. Here, “BR1-NNS207” is a special term. As shown in Example
6, “msf Forest” is also a special term. This incident is “Transient”,
which occurred since “msf Forest” was still at the stage of deploy-
ment. Therefore, the second type of features used in DeepIP is special
terms in the target incident report. Actually, special terms have been
included in textual descriptions in incident reports (the first type of
features). However, during the learning of textual descriptions, the
knowledge of special terms is hard to learn since the frequencies
of special terms are much smaller than those of other words in
textual descriptions. Therefore, to effectively learn the knowledge
of special terms, we extract special terms as a kind of features based
on their frequencies.

According to Section 3, the incident-occurring environments
are also related to the identification of incidental incidents. For
example, the incidents belonging to “False Alarm” tend to be caused
by the problems of monitors, and thus the monitor ID reporting an
incident is helpful to distinguish whether the incident is essential
or incidental. Therefore, the third type of features used in DeepIP
is the incident-occurring environmental information. In particular,
we consider the following environmental information: monitor ID,
incident-occurring device, and incident-reporting type.

4.2 Design of Deep Neural Network
To effectively utilize the three types of features to identify incidental
incidents, we design a deep neural network for DeepIP. In the
following, we first present feature embedding in Section 4.2.1, then
introduce attention-based text encoding in Section 4.2.2, and finally
present incidental incident prediction in Section 4.2.3.

4.2.1 Feature Embedding. Since the values of the second and third
types of features used in DeepIP are a finite set of discrete values,
we conduct feature embedding for them. One simple method is to
express all these discrete values as one-hot vectors [25]. However,
in this way, the dimension of an one-hot vector may be very high,
and it ignores the possible relations among different feature values.
To overcome these problems, we adopt representation learning [7]
to embed each feature value into a vector. Representation learning
is able to embed a value to a fixed-dimension vector, and gradually

How Incidental are the Incidents? ASE ’20, September 21–25, 2020, Virtual Event, Australia

!"#$%&"')$*'+,-	

./01:		.3,4&'	!"#$%&"'

…

…

05: 	0&6&73"'	!"#$%&"'

08: 	0&6&73"'	!"#$%&"'

09: 	0&6&73"'	!"#$%&"'

0:: 	0&6&73"'	!"#$%&"'

.&;<36	=&*#,$>'$+"*

.3,4&'	!"#$%&"'

?"7$,+"@&"'*

A+"$'+,!%		

=&7$#&B3@&	

!"#$%&"'.->&	

…

0&6&73"'	!"#$%&"'	D&#'+,*

.3,4&'	!"#$%&"'	D&#'+,

?"7$,+"@&"'	D&#'+,	?

A+"$'+,!% ∶ 	D&#'+,

=&7$#&B3@&: 	D&#'+,

!"#$%&"'.->&: 	D&#'+,

…

./01: Semantic	Vector

…

05:Semantic	Vector

08:Semantic	Vector

0::Semantic	Vector

.&;'	?"#+%$"4

Q''&"'$+"

R&$4ℎ'

R:

R8
R5
R1

…
Attention-based		

Relevant	

Vector	C

]$"36)$%%&"	̂ '3'&

_63**$ $̀#3'$+"	

a,+b3b6'$&*

^>&#$36	.&,@* ^>&#$36	.&,@	D&#'+,	a

0&6&73"'	!"#$%&"'*

]&3'<,&	?@b&%%$"4

.&;<36	=&*#,$>'$+"	D&#'+,*_BB − b3*&%	A+%&6

_+"7+6<'$+"36	63-&,	d$'ℎ	

@<6'$>6&	`$6'&,	d$%'ℎ*	
3"%	`&3'<,&	@3>*

A3;	

+7&, − '$@&	
pooling

+

_++6$"4

System

is

Malfunction

and

impacted

Multiple

…

03"l$"4	

!"#$%&"'*

Figure 6: Overview of DeepIP

updates the vector during the training process. In this way, each
of these features is embedded into a fixed-dimension vector. More
specifically, we denote the 𝑗𝑡ℎ feature vector in the second types of
features as 𝑃 𝑗 = {𝑝 𝑗1, 𝑝 𝑗2, . . . , 𝑝 𝑗𝑛}, and denote the 𝑘𝑡ℎ feature vec-
tor in the third types of features as 𝐸𝑘 = {𝑒𝑘1, 𝑒𝑘2, . . . , 𝑒𝑘𝑠 }, where
𝑛 and 𝑠 refer to the pre-defined fixed dimensions in representation
learning for the second and third types of features, respectively.
Here, we concatenate all the second types of feature vectors into a
vector 𝑃 = 𝑃1 ⊕ 𝑃2 ⊕ . . . ⊕ 𝑃𝑡 , and concatenate all the third types of
feature vectors into a vector 𝐸 = 𝐸1 ⊕ 𝐸2 ⊕ . . . ⊕ 𝐸𝑟 , where 𝑡 is the
number of the second type of feature vectors, 𝑟 is the number of the
third type of feature vectors, and ⊕ is the concatenation operator.

4.2.2 Attention-based Text Encoding. After acquiring the target in-
cident and its relevant incidents, for each of these incidents, DeepIP
first applies standard text mining method [8] to process the tex-
tual description (including tokenization, removing stop words, and
splitting). DeepIP then embeds each word in the textual description
of an incident report into a vector by using a word vector, which
is pre-trained on historical incident data using the FastText algo-
rithm [28]. In this way, the textual description of an incident is
transformed into a matrix, in which the number of rows is equal to
the number of words in the textual description.

Then, DeepIP encodes the matrix for an incident into a vector.
We use a CNN based neural-language model rather than traditional
language models to conduct encoding, since the former has been
demonstrated to be able to encode more complex patterns and focus
on word-level knowledge to achieve better performance [27, 31]. In
particular, we adopt the simple single-layer CNN-based model [31]
for encoding, since it has been demonstrated that such a model can
achieve better or comparable results and is easy for training and
prediction [31]. An overview of the CNN-based model is shown
in the left figure of Figure 6. More specifically, the CNN-based
model contains multiple 1D (1-dimension) convolution kernels and
max-over-time pooling. By using multiple convolution kernels with
several different widths, several feature maps are produced from the
matrix, where multiple convolution kernels with different widths
can capture the correlation among different numbers of adjacent
words. Then, the max-over-time pooling is applied to produce a
vector for each feature map in order to extract the most important
words. Finally, all produced vectors are concatenated to generate a

vector for an incident. In this way, the textual description of the tar-
get incident or each of the relevant incidents is encoded into a vector.
We denote the vector of the target incident as 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑚},
and the vector of the 𝑖𝑡ℎ relevant incident as 𝑅𝑖 = {𝑟𝑖1, 𝑟𝑖2, . . . , 𝑟𝑖𝑚},
where𝑚 is the total number of convolution kernels.

Since different relevant incidents may have different degrees
of correlation with the target incident, it is necessary for DeepIP
to learn these different degrees. The relevant incident that has a
stronger correlation with the target incident should be assigned
with a larger weight. Here, we introduce an attention mechanism to
automatically learn the weights of relevant incidents. Actually, it is
possible that all the identified relevant incidents have no correlation
with the target incident, and thus we also consider the correlation
of the target incident with itself when learning weights, so as to
avoid assigning weights to the irrelevant incidents in this case. For
ease of description, we call the vector of the target incident the 0𝑡ℎ
relevant incident and denote𝑇 as 𝑅0 = {𝑟01, 𝑟02, . . . , 𝑟0𝑚}. The input
to the attention mechanism is the vectors of the target incident and
its relevant incidents. The output is the attention-based relevant
vector integrated by these vectors, denoted as 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚},
where 𝑐𝑖 =

∑𝑁
𝑗=0 (𝑤 𝑗 ∗ 𝑟 𝑗𝑖) and𝑤 𝑗 is the learned weight of the 𝑗𝑡ℎ

relevant incident. The calculation of𝑤 𝑗 is shown as Formula 1.

𝑤 𝑗 =
𝑒 𝑓 (𝑅0,𝑅 𝑗))∑𝑁
𝑘=0 𝑒

𝑓 (𝑅0,𝑅𝑘)
(1)

where, 𝑓 (𝐴, 𝐵) = 𝑣T𝑡𝑎𝑛ℎ(𝑊𝐴𝐴 +𝑊𝐵𝐵), 𝐴 and 𝐵 are two vectors,
and 𝑣 ,𝑊𝐴 , and𝑊𝐵 are parameters learned in the MLP [6].

4.2.3 Predicting Incidental Incidents. After acquiring the four vec-
tors (i.e., 𝑇 , 𝐶 , 𝑃 , and 𝐸), DeepIP first utilizes the four vectors to
construct the final hidden state. Here, DeepIP concatenates the four
produced vectors 𝑇 , 𝐶 , 𝑃 , and 𝐸, i.e., 𝑇 ⊕ 𝐶 ⊕ 𝑃 ⊕ 𝐸. Then, DeepIP
converts the final hidden state into a probability distribution of
labels by the last layer, i.e., the softmax layer. In particular, DeepIP
minimizes the loss by gradient descent and gradually updates the
weight of the network. The classification cross entropy loss is used
for training. In this way, the incidental incidents can be predicted,
and each incident is assigned with a probability of being incidental.

At last, all the incidents are prioritized based on the ascend-
ing order of the predicted probabilities. The higher the incidents

ASE ’20, September 21–25, 2020, Virtual Event, Australia J. Chen et al.

are ranked, the larger the probabilities that the incidents are es-
sential incidents are. Engineers can then optimize their incident
management process by handling the incidents ranked higher first.
Moreover, since our attention mechanism is able to learn the corre-
lation degrees of relevant incidents with the target incident, DeepIP
also recommends the most relevant incident together with the tar-
get incident, which could facilitate engineers to understand the
nature of the incident and diagnose it.

5 EVALUATION
To investigate the performance of DeepIP, we conduct an extensive
study using real-world incident data. We use the 18 industrial online
service systems studied in Section 3 as subjects. In particular, we
use the incident data from the first four months as the training data,
and the incident data from the last two months as the testing data.
In the study, we address the following research questions:

• RQ5: How does DeepIP perform for real-world large-scale
online service systems?

• RQ6: Does each type of features contribute to DeepIP?

5.1 Evaluation Design
5.1.1 Compared Approaches. Since our work is the first to pri-
oritize incidents by predicting incidental incidents for online ser-
vice systems, there is no direct comparative approach. For tra-
ditional software systems, there are several work on predicting
severity of bug reports, which can be adapted to prioritize inci-
dents [32, 37, 43, 52]. Therefore, we select two typical bug-severity
prediction approaches as the comparative approaches in this study.
Both approaches are also based on textual descriptions of reports.

• Menzies and Marcus [37], which applies the standard text
mining method [8] to process textual descriptions in reports,
and then uses tf-idf (term frequency and inverse document
frequency) [24] to transform the textual descriptions in a
bug report to a vector. Finally, their approach uses the rule
classifier based on entropy and information gain to predict
bug severity [39].

• Lamkanfi et al. [32], which applies the standard text mining
method to process textual descriptions. Then, this approach
counts token frequency and uses the Naive Bayes algorithm
to predict bug severity.

When adapting these approaches, the incident severity is inci-
dental and essential, and all the incidents are prioritized based on
the ascendant order of the predicted probabilities that incidents
are incidental, which are given by the corresponding approach. For
ease of presentation, in this paper we call the two approaches Rule
and Bayes respectively, based on the way they perform prediction.

Actually, we also tried to use another state-of-the-art approach
to bug severity prediction [52] as a comparative approach. This
approach calculates the similarities between a new bug report and
historical bug reports using BM25F [41] and LDA [9]. However,
it cannot work well on incidental incident prediction since it is
very time costly. Its time complexity is 𝑂 (𝑚𝑛), where𝑚 and 𝑛 are
the number of incidents in training and testing data, respectively.
For each instance in testing data, it has to calculate the similarities
with all incidents in training data, thus its cost is very considerable
due to the large scale of the incident data for a system in practice.

For example, we applied it to the system with the smallest number
of incidents in our study (i.e., S7). The time spent on prioritizing
incidents in testing data is up to 3,330 seconds, while the time re-
quired by DeepIP, Rule, and Bayes is only 2.54 seconds, 0.01 seconds,
and 0.31 seconds as shown in Table 2. For larger datasets, the re-
quired time could be much longer. Therefore, we did not include
this approach as a comparative approach in our study.

In RQ6, we evaluate the contribution of each type of features.
Here, we always keep the first type of features (i.e., textual descrip-
tions) since it is the core information about incidents. We remove
the second or third type of features and produce two variants of
DeepIP, denoted as DeepIP𝑛𝑜𝑃 and DeepIP𝑛𝑜𝐸 , respectively. We
then compare the performance of the three versions.

5.1.2 Implementations and Parameters. Since the implementations
of compared approaches are unavailable, we re-implemented them
following descriptions in the papers. For the involved machine
learning algorithms, we adopted the implementations provided
by scikit-learn [3]. For DeepIP, we implemented CNN based on
Apache MXNet [1], a scalable deep learning framework. For the
compared approaches, we used the same values of the parameters
as given in the corresponding papers. If a parameter’s value is not
explicitly given in the paper, we used the default value provided
by the adopted tools. For the parameters in DeepIP, we determined
them through grid search and set the same parameters for all the
studied systems. More specifically, we set the parameters as follows:
the CNNuses three sets of convolution kernels with different widths
(i.e., 3, 4, 5), each of which has 100 kernels, and the used epoch
is 20. The time window is set to be the time interval backwards
10 incidents from the target incident. In Section 6, we discuss the
impact of the time window on DeepIP. Our study is conducted
on Windows Server 2016 with 28-core Dual-Intel Xeon E5-2690
CPU(2.60GHz), 512 GB memory, 64-bit operating system, and a
single NVIDIA Tesla K80 GPU accelerator. We cannot release the
incident data used in our study due to the policy of Microsoft, but
we release the source code for these approaches in the project
homepage: https://github.com/JunjieChen/DeepIP.

5.1.3 Metrics. In this study, we consider both effectiveness and
efficiency to measure the performance of DeepIP. We first measure
the effectiveness of DeepIP in incident prioritization by adopting
the widely-used AUC metric [18], which measures the accuracy
that essential incidents are ranked higher than incidental incidents
in our context. That is, AUC can be viewed as a metric based on
pairwise comparisons between classifications of the two classes. Fol-
lowing existing work [13, 14], supposing the output probabilities of
an approach on the essential incidents are {𝑥1, 𝑥2, . . . , 𝑥𝑚} and the
output probabilities on the incidental incidents are {𝑦1, 𝑦2, . . . , 𝑦𝑛},
the AUC is computed as Formula 2. Larger is better.

𝐴𝑈𝐶 =

∑𝑚
𝑖=1

∑𝑛
𝑗=1 1𝑥𝑖>𝑦 𝑗

𝑚𝑛
(2)

Besides, since the identification of incidental incidents is the core
of DeepIP, we also measure the effectiveness of the classification
of incidental and essential incidents. Here, we adopted the widely-
used Precision and Recall metrics. Precision is computed by 𝑇𝑃

𝑇𝑃+𝐹𝑃 ,
while Recall is computed by 𝑇𝑃

𝑇𝑃+𝐹𝑁 , where 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 refer
to the number of true positives (TP), false positives (FP), and false

https://github.com/JunjieChen/DeepIP

How Incidental are the Incidents? ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 2: Performance comparison among the DeepIP, Rule, and Bayes approaches

Sub AUC Precision Recall Training Time (s) Predicting Time (s)
DeepIP Rule Bayes DeepIP Rule Bayes DeepIP Rule Bayes DeepIP Rule Bayes DeepIP Rule Bayes

S1 0.915 0.698 0.737 0.808 0.705 0.738 0.800 0.698 0.724 5586.71 1681.51 62.76 55.48 1.82 19.05
S2 0.765 0.605 0.510 0.687 0.601 0.570 0.679 0.601 0.510 16743.19 97.12 756.16 130.51 0.12 468.29
S3 0.879 0.688 0.439 0.794 0.693 0.445 0.681 0.688 0.438 2482.99 42.80 30.59 14.92 0.05 12.84
S4 0.824 0.675 0.449 0.721 0.686 0.408 0.745 0.675 0.449 2254.65 29.28 26.19 17.04 0.08 27.37
S5 0.880 0.621 0.691 0.642 0.535 0.549 0.778 0.621 0.691 5482.05 4.77 3.20 122.05 0.10 8.93
S6 0.848 0.669 0.652 0.792 0.675 0.657 0.787 0.669 0.653 2597.75 9.78 6.06 7.86 0.02 2.82
S7 0.721 0.584 0.516 0.700 0.584 0.539 0.693 0.584 0.515 657.72 3.37 0.84 2.54 0.01 0.31
S8 0.809 0.630 0.577 0.755 0.629 0.588 0.756 0.630 0.565 3150.25 62.68 122.30 7.07 0.05 35.00
S9 0.824 0.537 0.522 0.656 0.524 0.510 0.666 0.537 0.521 1509.49 9.87 4.77 6.92 0.01 3.37
S10 0.925 0.750 0.763 0.848 0.753 0.719 0.846 0.750 0.562 68792.16 489.68 9.21 139.52 0.35 4.30
S11 0.686 0.581 0.536 0.657 0.582 0.580 0.654 0.581 0.534 1563.38 48.01 35.37 7.98 0.05 27.17
S12 0.783 0.616 0.584 0.773 0.645 0.583 0.747 0.616 0.579 5518.76 118.45 149.06 24.74 0.14 78.69
S13 0.850 0.619 0.616 0.754 0.616 0.673 0.772 0.617 0.609 14627.12 258.57 269.80 87.92 0.29 159.02
S14 0.751 0.588 0.671 0.680 0.591 0.620 0.673 0.588 0.616 4839.38 140.64 2.54 29.53 0.11 1.64
S15 0.704 0.570 0.496 0.651 0.579 0.494 0.633 0.570 0.497 1402.75 28.11 13.25 12.62 0.04 10.36
S16 0.804 0.602 0.530 0.691 0.583 0.543 0.708 0.602 0.529 982.64 20.01 23.94 2.18 0.02 6.15
S17 0.790 0.660 0.710 0.741 0.662 0.740 0.740 0.662 0.710 9709.73 61.36 71.97 54.30 0.04 29.77
S18 0.792 0.534 0.546 0.715 0.534 0.554 0.714 0.534 0.546 1116.51 11.51 7.35 1.35 0.01 1.04
Avg 0.808 0.624 0.586 0.726 0.621 0.584 0.726 0.624 0.569 8278.74 173.20 88.63 40.25 0.18 49.78

negatives (FN), respectively. In particular, as demonstrated in the
existing work [19], we calculate the mean of all the classes for the
two metrics. Larger is better.

For efficiency, we record the time spent on the training process
and the time spent on prioritizing all the incidents in testing data.
We call the former training time and the latter predicting time.

5.2 Results and Analysis
5.2.1 Overall Effectiveness of DeepIP. Table 2 shows the perfor-
mance comparison among the three approaches, i.e., DeepIP, Rule,
and Bayes, where bold values represent the best results among
the three approaches. From Columns 2-4 in Table 2, DeepIP out-
performs the two compared approaches (i.e., Rule and Bayes) on
all the studied systems in terms of AUC, showing the significant
advantage of DeepIP for incident prioritization. In particular, the
average AUC of DeepIP is 0.808, while the other two approaches
are just 0.624 and 0.586, respectively. Also, the range of AUC for
DeepIP is from 0.686 to 0.925, demonstrating that DeepIP is able
to achieve stably good prioritization effectiveness. Furthermore, in
terms of Precision and Recall shown in Columns 5-10 in Table 2,
DeepIP also performs much better than Rule and Bayes on all the
subjects. The average Precision and Recall of DeepIP are 0.726 and
0.726, while those of Rule are 0.621 and 0.624 and those of Bayes
are 0.584 and 0.569. These results also reflect that the adapted ap-
proaches from traditional bug-severity prediction are not suitable
to solve the problem of incidents of online service systems due to
their differences. We further analyze the reason is that, incidents
are mainly automatically reported by monitors and have significant
time and location correlations [10], while bug reports are manually
reported by users and thus the correlations are not as significant as
in incident reports. Therefore, existing approaches for bug reports
ignoring correlations, cannot perform well for incidents. That is, it
is quite necessary to propose new approaches by considering the
characteristics of incidents. For incident prioritization, DeepIP is

the first attempt to solve this problem, and our results have shown
that it is a promising approach.

Columns 11-16 in Table 2 show the efficiency comparison among
DeepIP, Rule, and Bayes. For the offline training time, Bayes spends
the shortest time (i.e., 0.02 hours), while our approach DeepIP
spends the longest time (i.e., 2.30 hours) on average. However,
the training is offline and thus several hours are acceptable in prac-
tice. For the online predicting time, Rule is the most efficient one
(i.e., 0.18 seconds) while Bayes spends the longest time (i.e., 49.78
seconds) and DeepIP is the medium (i.e., 40.25 seconds) on average.
Actually, the online predicting time of all the three approaches is
short, and even the time spent on predicting one incident is negli-
gible. Therefore, our approach DeepIP is practical due to the short
online predicting time and acceptable offline training time.

5.2.2 Contributions of Different Types of Features. Figure 7 shows
the comparison among DeepIP, DeepIP𝑛𝑜𝑃 , and DeepIP𝑛𝑜𝐸 , where
the Y-axis represents the average metric value of the 18 subjects.
From the left figure, DeepIP performs better than both DeepIP𝑛𝑜𝑃
and DeepIP𝑛𝑜𝐸 in all the metrics. We further conducted a Wilcoxon
signed-rank test [47] at the significant level of 0.05 between DeepIP
and DeepIP𝑛𝑜𝑃 /DeepIP𝑛𝑜𝐸 to investigate whether the former sig-
nificantly outperforms the latter two. From the right of Figure 7,
we find that all the p-values are much smaller than 0.05, demon-
strating that DeepIP indeed significantly outperforms DeepIP𝑛𝑜𝑃
and DeepIP𝑛𝑜𝐸 in terms of AUC, Precision, and Recall. The results
indicate that both special term features and incident-occurring en-
vironment features can significantly improve the effectiveness of
DeepIP, confirming the contributions of these features.

6 DISCUSSION
CommunicationwithEngineers inMicrosoft.Wehave reported
our results to the responsible engineers in Microsoft and commu-
nicated with them by emails. They expressed their troubles on
incidental incidents, and also experienced and largely appreciated

ASE ’20, September 21–25, 2020, Virtual Event, Australia J. Chen et al.

Wilcoxon	signed-rank	test	
p-value:

AUC:
DeepTIP v.s.	DeepTIPnoV:	0.0021
DeepTIP v.s.	DeepTIPnoE:	0.0009

Precision:
DeepTIP v.s.	DeepTIPnoV:	0.0025
DeepTIP v.s.	DeepTIPnoE:	0.0004

Recall:
DeepTIP v.s.	DeepTIPnoV:	0.0050
DeepTIP v.s.	DeepTIPnoE:	0.0010

0.0

0.2

0.4

0.6

0.8

AUC Precision Recall

Av
er

ag
e

m
et

ric
 v

al
ue

DeepTIP DeepTIP(noV) DeepTIP(noE)DeepIP DeepIP(noV) DeepIP(noE)

DeepIP
DeepIP

DeepIP
DeepIP

DeepIP
DeepIP

DeepIPnoV
DeepIPnoE

DeepIPnoV
DeepIPnoE

DeepIPnoV
DeepIPnoE

Figure 7: Contribution of each type of features

the functionality (i.e., prioritizing incidents by identifying inciden-
tal incidents) provided by us. For example, one engineer complained
that she/he spent too much time on investigating false-alarm inci-
dents, and noticed the real issue much later. Another engineer also
pointed out that the current IcM system is overloaded and has many
incidental incidents. In particular, they believed that the current
performance of DeepIP is useful and gave us some suggestions to
make our tool more user-friendly, e.g., it would be better if there is
a “prioritized view” of incidents in the IcM system.
Generality of DeepIP. Although DeepIP is proposed and eval-
uated for incidents of online service systems, the framework of
DeepIP is actually general. To investigate the generality of DeepIP,
we applied it to predict the severity of traditional bug reports. In
particular, we compared DeepIP with the state-of-the-art bug sever-
ity prediction approach [52] (introduced in Section 5.1.1). Here, we
used the same Mozilla dataset released by the compared work, and
used the results reported in their paper (the precision of 0.439 and
the recall of 0.486). By applying DeepIP to the same dataset, DeepIP
achieves the precision of 0.610 and the recall of 0.536, improving the
state-of-the-art approach by 41.00% and 10.29% respectively. The re-
sult confirms the generality of DeepIP. The reason why DeepIP can
perform well for bug reports is that, its attention mechanism can
determine whether there are relevant bugs for the target bug, and
it can understand semantics of textual descriptions, outperforming
traditional text-similarity-based approaches. We also released the
Mozilla dataset on our project webpage.
Impact of the Setting of TimeWindow. We investigated the im-
pact of the time window on DeepIP. The default setting of the time
window in DeepIP is 10. We also experimented different window
sizes such as 0, 5, and 15. The results show that the default setting
performs the best in general. The small settings (0 and 5) perform
relatively worse than the large settings (10 and 15), indicating the
necessity of considering a relatively large number of relevant in-
cidents of a target incident. In addition, we conducted Wilcoxon
signed-rank test at the significant level of 0.05 between the settings
of 10 and 0 to investigate whether considering relevant incidents
can significantly improve the effectiveness of DeepIP in terms of
AUC, Precision, and Recall. The resulting p-values are all less than
0.05, confirming the contribution of relevant incidents in DeepIP.
Threats to Validity. The internal threat to validity mainly lies in
the implementations of our approach and the compared approaches.
To reduce this threat, two authors have carefully checked the code.

For the various machine learning and information retrieval algo-
rithms used in our work, we adopted the implementations provided
by mature tools, which has been presented in Section 5.1.2.

The external threats to validity mainly lie in the subjects and
compared approaches. In this work, we studied 18 real-world online
service systems in Microsoft. All the used data are real in indus-
try. To our best knowledge, this is the first large-scale study in
this area. Even so, the used subjects may not represent systems
in other companies. In the future, we will investigate more sys-
tems from different companies. Since the framework of DeepIP is
general, it is easy to apply it to other companies as long as the com-
panies have historical data for training. Also, some specific features
may be different for different companies. In particular, we have con-
ducted a study above by applying DeepIP to an open-sourceMozilla
dataset, demonstrating the generality of DeepIP. For the compared
approaches, we selected two typical bug severity prediction ap-
proaches and also discussed the state-of-the-art approach [52] in
Section 5.1.1. However, they may not represent other approaches.
In the future, we will consider more approaches for comparison.

The construct threats to validity mainly lie in the used metrics,
used parameters, and labeled data. To evaluate the performance of
DeepIP, we used widely-used AUC, precision, and recall for mea-
suring effectiveness, and used training time and predicting time
for measuring efficiency. In the future, we will use more metrics
to more sufficiently measure the performance of these approaches.
For the parameters in the compared approaches, we set them using
the values given in the papers or provided by the used mature tools.
For the parameters in DeepIP, we set them via grid search, whose
specific settings have been presented in Section 5.1.2. Also, we dis-
cussed the impact of the main parameter time window size above.
In the future, we will further investigate the impact of other param-
eters. The incident data were labeled manually by engineers, and
there may be noise. However, these engineers have rich experiences
and domain knowledge, thus this threat may not be serious.

7 RELATEDWORK
Incident Management. The most related work to ours is inci-
dent management. For example, Lou et al. [35, 36] presented an
experience report on applying software analytics to incident man-
agement of online service systems, including incident diagnosis
and mitigation. Chen et al. [10] conducted an extensive study to
investigate incident triage for online service systems and evaluated
the performance of traditional software bug triage techniques in the
incident-triage context. Some work aims to associate a new incident
with a previous known incident [17, 34]. For example, Duan and
Babu [17] proposed an approach to improving the accuracy based
on active learning, which maximizes the benefits gained from new
unknown instances to facilitate manual labeling efforts. Different
from them, our work aims to characterize incidents of online ser-
vice systems and then prioritize incidents by identifying incidental
incidents to improve the incident management process.
Bug Report Management. There are many common character-
istics between incident reports of online service systems and bug
reports of traditional software systems. Over the years, there have
been many empirical studies on bug reports and bug-fixing perfor-
mance [22, 30, 33, 38]. For example, Li et al. [33] manually collected

How Incidental are the Incidents? ASE ’20, September 21–25, 2020, Virtual Event, Australia

709 bugs from Mozilla and Apache Web Server, and analyzed the
bug characteristics. Mockus et al. [38] proposed quality metrics (e.g.,
the percentage of defective files) to understand software mainte-
nance efforts quantitatively. Guo et al. [22] performed an empirical
study to characterize factors that determine which bugs get fixed
in Windows 7. Some researchers also studied defect life cycles [15],
bug distributions [4, 51], bug triage [5, 23], and bug-report based
fault localization [48, 57]. Furthermore, there are also many pa-
pers on automatic assessment of the severity and priority of bug
reports [32, 49, 52]. For example, Menzies and Marcus [37] pro-
posed a tool named SEVERIS, which utilized standard information
retrieval techniques and a rule learner to infer the connections be-
tween the most informative tokens in a bug report and the severity
level. Tian et al. [44] proposed a machine learning based approach
that can recommend a priority level based on information available
in bug reports. Different from them, we perform an empirical study
of incidents using industrial data and propose an approach to pri-
oritizing incidents. Although incident and bug reports have much
in common, they have some different characteristics. For example,
bug reports are often reported and treated individually, while many
incident reports tend to be correlated. One major reason is that
an incident can lead to a series of other incidents, which can be
detected by different monitors.
Empirical Analysis of Failures of Cloud Systems. Over the
years, there have been many empirical studies on the characteris-
tics of failures of data centers and cloud systems [20, 42, 45, 56]. For
example, Schroeder and Gibson [42] described a large-scale study
of failures in high-performance computing systems. Zhou et al.[56]
performed an empirical study on quality issues of a real-world big
data platform. Researchers also investigated the root causes of the
system failures [21, 40, 50]. For example, Gray [21] found that ad-
ministrator errors were responsible for 42% of system failures in
high-end mainframes. Yin et al. [50] studied 546 real-world mis-
configurations and found that a large portion of misconfigurations
can cause hard-to-diagnose failures. Different from them, we focus
on incidents rather than failures. Our study shows that not all inci-
dents can lead to system failures. Many incidents (i.e., incidental
incidents) are not important and will not get fixed with a high
priority. In this work, we characterize the incidental incidents and
propose a deep-learning based approach to prioritizing incidents.
Our work allows engineers to more efficiently spend their efforts
on incident management.

8 CONCLUSION
To better understand real-world incidents, we conduct a large-scale
empirical study on incidents of 18 online service systems in Mi-
crosoft. We find that a large number of incidents are reported within
a short period, but many incidents are incidental. Our qualitative
and quantitative analysis show that on average, more than half of
incidents are incidental and the percentage of maintenance time
spent on them is up to 55.05%. Therefore, it is quite necessary to
prioritize incidents by identifying incidental incidents in advance
so as to optimize the incident management process. Towards this
direction, we propose DeepIP, a deep learning based approach to
prioritizing incidents by predicting the probabilities of incidents
being incidental. Our experimental results show that DeepIP can

achieve the AUC value of 0.808 on average with acceptable cost,
which significantly outperforms all the compared approaches. In
the future, we will further improve DeepIP to predict multiple
categories of incidents instead of directly identifying incidental
incidents and essential incidents.

ACKNOWLEDGEMENTS
This work was partially supported by ARC DP200102940.

REFERENCES
[1] Accessed: 2019. MXNet. https://mxnet.incubator.apache.org/
[2] Accessed: 2019. news. https://www.businessinsider.com/amazon-prime-day-

website-issues-cost-it-millions-in-lost-sales-2018-7
[3] Accessed: 2019. scikit-learn. http://scikit-learn.org/stable/
[4] Carina Andersson and Per Runeson. 2007. A Replicated Quantitative Analysis of

Fault Distributions in Complex Software Systems. IEEE Trans. Softw. Eng. 33, 5
(May 2007), 273–286. https://doi.org/10.1109/TSE.2007.1005

[5] John Anvik and Gail CMurphy. 2011. Reducing the effort of bug report triage: Rec-
ommenders for development-oriented decisions. ACM Transactions on Software
Engineering and Methodology (TOSEM) 20, 3 (2011), 10.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. international conference
on learning representations (2015).

[7] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation
learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence 35, 8 (2013), 1798–1828.

[8] Michael W Berry and Malu Castellanos. 2004. Survey of text mining. Computing
Reviews 45, 9 (2004), 548.

[9] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research 3, Jan (2003), 993–1022.

[10] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng
Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. An Empirical
Investigation of Incident Triage for Online Service Systems. In Proceedings of the
41st ACM/IEEE International Conference on Software Engineering. to appear.

[11] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao,
Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. Continuous incident
triage for large-scale online service systems. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 364–375.

[12] Yujun Chen, Xian Yang, Hang Dong, Xiaoting He, Hongyu Zhang, Qingwei Lin,
Junjie Chen, Pu Zhao, Yu Kang, Feng Gao, Zhangwei Xu, and Dongmei Zhang.
2020. Identifying Linked Incidents in Large-scale Online Service Systems. In The
28th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. to appear.

[13] Stéphan Clémençon and Nicolas Vayatis. 2007. Ranking the best instances.
Journal of Machine Learning Research 8, Dec (2007), 2671–2699.

[14] Corinna Cortes and Mehryar Mohri. 2003. AUC Optimization vs. Error Rate Mini-
mization. In Proceedings of the 16th International Conference on Neural Information
Processing Systems. 313–320.

[15] Marco D’Ambros, Michele Lanza, and Martin Pinzger. 2007. " A Bug’s Life" Visu-
alizing a Bug Database. In Visualizing Software for Understanding and Analysis,
2007. VISSOFT 2007. 4th IEEE International Workshop on. IEEE, 113–120.

[16] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1285–1298.

[17] Songyun Duan and Shivnath Babu. 2008. Guided problem diagnosis through
active learning. In International Conference on Autonomic Computing. 45–54.

[18] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters
27, 8 (2006), 861–874.

[19] George Forman and Martin Scholz. 2010. Apples-to-apples in cross-validation
studies: pitfalls in classifier performance measurement. ACM SIGKDD Explo-
rations Newsletter 12, 1 (2010), 49–57.

[20] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
network failures in data centers: measurement, analysis, and implications. In
ACM SIGCOMM Computer Communication Review, Vol. 41. ACM, 350–361.

[21] Jim Gray. 1986. Why do computers stop and what can be done about it?. In
Symposium on reliability in distributed software and database systems. Los Angeles,
CA, USA, 3–12.

[22] Philip J Guo, Thomas Zimmermann, NachiappanNagappan, and BrendanMurphy.
2010. Characterizing and predicting which bugs get fixed: an empirical study of
Microsoft Windows. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 1. ACM, 495–504.

[23] Philip J Guo, Thomas Zimmermann, NachiappanNagappan, and BrendanMurphy.
2011. Not my bug! and other reasons for software bug report reassignments. In

https://mxnet.incubator.apache.org/
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
http://scikit-learn.org/stable/
https://doi.org/10.1109/TSE.2007.1005

ASE ’20, September 21–25, 2020, Virtual Event, Australia J. Chen et al.

Proceedings of the ACM 2011 conference on Computer supported cooperative work.
ACM, 395–404.

[24] David J Hand. 2007. Principles of data mining. Drug safety 30, 7 (2007), 621–622.
[25] David Harris and Sarah Harris. 2012. Digital Design and Computer Architecture,

Second Edition (2nd ed.). Morgan Kaufmann Publishers Inc.
[26] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu

Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei
Zhang. 2020. How to Mitigate the Incident? An Effective Troubleshooting Guide
Recommendation Technique for Online Service Systems. In The 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Industry track. to appear.

[27] Rie Johnson and Tong Zhang. 2017. Deep pyramid convolutional neural networks
for text categorization. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 562–570.

[28] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,
and Tomas Mikolov. 2016. FastText.zip: Compressing text classification models.
arXiv preprint arXiv:1612.03651 (2016).

[29] Yujun Chen; Xian Yang; Qingwei Lin; Hongyu Zhang; Feng Gao; Zhangwei Xu;
Yingnong Dang; Dongmei Zhang; Hang Dong; Yong Xu; Hao Li; Yu Kang;. 2019.
Outage Prediction and Diagnosis for Cloud Service Systems. In Proceedings of
the 2018 World Wide Web Conference on World Wide Web, WWW 2018. to appear.

[30] Sunghun Kim and E James Whitehead Jr. 2006. How long did it take to fix bugs?.
In Proceedings of the 2006 international workshop on Mining software repositories.
ACM, 173–174.

[31] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL. 1746–1751.

[32] Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, and Bart Goethals. 2010. Pre-
dicting the severity of a reported bug. InMining Software Repositories (MSR), 2010
7th IEEE Working Conference on. IEEE, 1–10.

[33] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang
Zhai. 2006. Have things changed now?: an empirical study of bug characteristics
in modern open source software. In Proceedings of the 1st workshop on Architec-
tural and system support for improving software dependability. ACM, 25–33.

[34] MengHui Lim, Jian Guang Lou, Hongyu Zhang, Fu Qiang, Andrew Teoh, Qingwei
Lin, Justin Ding, and Dongmei Zhang. 2015. Identifying Recurrent and Unknown
Performance Issues. In IEEE International Conference on Data Mining.

[35] Jianguang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao
Xie. 2013. Software analytics for incident management of online services: an
experience report. automated software engineering (2013), 475–485.

[36] Jianguang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao Xie.
2017. Experience report on applying software analytics in incident management
of online service. automated software engineering 24, 4 (2017), 905–941.

[37] Tim Menzies and Andrian Marcus. 2008. Automated severity assessment of soft-
ware defect reports. In Software Maintenance, 2008. ICSM 2008. IEEE International
Conference on. IEEE, 346–355.

[38] Audris Mockus, Roy T Fielding, and James D Herbsleb. 2002. Two case studies of
open source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11, 3 (2002), 309–346.

[39] Nasser M Nasrabadi. 2007. Pattern recognition and machine learning. Journal of
electronic imaging 16, 4 (2007), 049901.

[40] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen,
James Cutler, Patricia Enriquez, Armando Fox, Emre Kiciman, Matthew
Merzbacher, et al. 2002. Recovery-oriented computing (ROC): Motivation, definition,
techniques, and case studies. Technical Report. Technical Report UCB//CSD-02-
1175, UC Berkeley Computer Science.

[41] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval

3, 4 (2009), 333–389.
[42] Bianca Schroeder and Garth Gibson. 2010. A large-scale study of failures in

high-performance computing systems. IEEE Transactions on Dependable and
Secure Computing 7, 4 (2010), 337–350.

[43] Yuan Tian, David Lo, and Chengnian Sun. 2013. Drone: Predicting priority of
reported bugs by multi-factor analysis. In 2013 IEEE International Conference on
Software Maintenance. IEEE, 200–209.

[44] Yuan Tian, David Lo, Xin Xia, and Chengnian Sun. 2015. Automated prediction
of bug report priority using multi-factor analysis. Empirical Software Engineering
20, 5 (2015), 1354–1383.

[45] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. 2010. Characterizing
cloud computing hardware reliability. In Proceedings of the 1st ACM symposium
on Cloud computing. ACM, 193–204.

[46] Lingzhi Wang, Nengwen Zhao, Junjie Chen, Pinnong Li, Wenchi Zhang, and
Kaixin Sui. 2020. Root-Cause Metric Location for Microservice Systems via Log
Anomaly Detection. In The 2020 IEEE International Conference on Web Services.
to appear.

[47] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83.

[48] Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong
Mei. 2014. Boosting bug-report-oriented fault localization with segmentation
and stack-trace analysis. In 2014 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). IEEE, 181–190.

[49] Cheng-Zen Yang, Chun-Chi Hou, Wei-Chen Kao, and Xiang Chen. 2012. An
empirical study on improving severity prediction of defect reports using feature
selection. In Software Engineering Conference (APSEC), 2012 19th Asia-Pacific,
Vol. 1. IEEE, 240–249.

[50] Zuoning Yin, XiaoMa, Jing Zheng, Yuanyuan Zhou, Lakshmi N Bairavasundaram,
and Shankar Pasupathy. 2011. An empirical study on configuration errors in
commercial and open source systems. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. ACM, 159–172.

[51] H. Zhang. 2008. On the Distribution of Software Faults. IEEE Transactions on
Software Engineering 34, 2 (March 2008), 301–302. https://doi.org/10.1109/TSE.
2007.70771

[52] Tao Zhang, Jiachi Chen, Geunseok Yang, Byungjeong Lee, and Xiapu Luo. 2016.
Towards more accurate severity prediction and fixer recommendation of software
bugs. Journal of Systems and Software 117 (2016), 166–184.

[53] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 807–817.

[54] Nengwen Zhao, Junjie Chen, Xiao Peng, Honglin Wang, Xinya Wu, Yuanzong
Zhang, Zikai Chen, Xiangzhong Zheng, Xiaohui Nie, GangWang, YongWu, Fang
Zhou, Wenchi Zhang, Kaixin Sui, and Dan Pei. 2020. Understanding and Handling
Alert Storm for Online Service Systems. In The 42nd International Conference on
Software Engineering, SEIP track. to appear.

[55] Nengwen Zhao, Junjie Chen, ZhouWang, Xiao Peng, GangWang, YongWu, Fang
Zhou, Zhen Feng, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. 2020.
Real-time Incident Prediction for Online Service Systems. In The 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. to appear.

[56] Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Haibo Lin, Haoxiang Lin, and
Tingting Qin. 2015. An Empirical Study on Quality Issues of Production Big
Data Platform. In Proceedings of the 37th International Conference on Software
Engineering - Volume 2 (Florence, Italy) (ICSE ’15). IEEE Press, Piscataway, NJ,
USA, 17–26. http://dl.acm.org/citation.cfm?id=2819009.2819014

[57] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug reports.
In Software Engineering (ICSE), 2012 34th International Conference on. IEEE, 14–24.

https://doi.org/10.1109/TSE.2007.70771
https://doi.org/10.1109/TSE.2007.70771
http://dl.acm.org/citation.cfm?id=2819009.2819014

	Abstract
	1 Introduction
	2 Background
	3 An Empirical Study of Incidents
	3.1 Subjects
	3.2 RQ1: Qualitative Analysis
	3.3 RQ2: Percentage of Incidental Incidents
	3.4 RQ3: Effort Spent on Incidental Incidents
	3.5 RQ4: Investigation of Incident Management Practice

	4 Incident Prioritization
	4.1 Feature Identification
	4.2 Design of Deep Neural Network

	5 Evaluation
	5.1 Evaluation Design
	5.2 Results and Analysis

	6 Discussion
	7 Related Work
	8 Conclusion
	References

