
Supporting Oracle Construction via Static Analysis

Junjie Chen1,2, Yanwei Bai1,2, Dan Hao1,2†, Lingming Zhang3, Lu Zhang1,2, Bing Xie1,2, Hong Mei1,2
1Key Laboratory of High Confidence Software Technologies (Peking University), MoE

2Institute of Software, EECS, Peking University, Beijing, 100871, China
{chenjunjie,byw,haodan,zhanglucs,xiebing,meihong}@pku.edu.cn
3Department of Computer Science, University of Texas at Dallas, 75080, USA

lingming.zhang@utdallas.edu

ABSTRACT
In software testing, the program under test is usually ex-
ecuted with test inputs and checked against a test oracle,
which is a mechanism to verify whether the program behaves
as expected. Selecting the right oracle data to observe is cru-
cial in test oracle construction. In the literature, researchers
have proposed two dynamic approaches to oracle data selec-
tion by analyzing test execution information (e.g., variables’
values or interaction information). However, collecting such
information during program execution may incur extra cost.
In this paper, we present the first static approach to oracle
data selection, SODS (Static Oracle Data Selection). In par-
ticular, SODS first identifies the substitution relationships
between candidate oracle data by constructing a probabilis-
tic substitution graph based on the definition-use chains of
the program under test, then estimates the fault-observing
capability of each candidate oracle data, and finally selects a
subset of oracle data with strong fault-observing capability.
For programs with analyzable test code, we further extend
SODS via pruning the probabilistic substitution graph based
on 0-1-CFA call graph analysis. The experimental study on
11 subject systems written in C or Java demonstrates that
our static approach is more effective and much more efficient
than state-of-the-art dynamic approaches in most cases.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Test oracle, oracle data selection, static analysis

1. INTRODUCTION
In software testing, a test oracle is a mechanism determin-

ing whether a program executes as expected for the given
test inputs, and it intuitively consists of variables to be ob-
served during testing and their expected values. For the

†Corresponding author.

same test inputs, different test oracles may demonstrate
different fault-detection capability. Therefore, high-quality
test oracles are essential for detecting software faults. In
the literature, although researchers proposed various tech-
niques [7, 34, 56, 52, 11, 31] to automatically generate test
inputs, the test oracle problem is still recognized as one of
the most difficult problems in software testing [5, 12, 71, 73].

Generally speaking, test oracle creation requires the vari-
ables for observation and their expected values. As a pro-
gram usually consists of various internal and output vari-
ables, which may be observed at various positions in soft-
ware testing, the program has many candidate oracle data1

to be included in the test oracle. The more oracle data a
test oracle contains, the more powerful the test oracle is in
detecting faults [6, 70]. However, it can be extremely costly
to construct a test oracle with all or a large portion of oracle
data, because developers need to specify the expected values
of these variables. Therefore, the problem of oracle data se-
lection arises, aiming at reducing the number of oracle data
in constructing a test oracle [62]. In the literature, two dy-
namic approaches (i.e., MAODS [62] and DODONA [46])
have been proposed to select oracle data by analyzing the
execution information (i.e., variables’ values or interactions)
of many tests. However, it may incur extra cost to collect
the dynamic execution information [48].

To address this issue, we present the first static approach,
SODS, to selecting oracle data for observation in software
testing. Our approach defines and constructs a probabilistic
substitution graph based on the definition-use chains for the
program under test. The probabilistic substitution graph is
a graph that presents to what extent (i.e., in terms of proba-
bility) a candidate oracle data may be a substitute for others.
Then SODS estimates the capability of each candidate ora-
cle data on observing faults in each statement by considering
to what extent substitution relationships transfer (measured
by α). Finally, SODS determines the selection order of can-
didate oracle data based on their fault-observing capability
and the impact of selected oracle data (measured by fp).
Furthermore, for any programs with analyzable test code
(e.g., JUnit tests), we extend our static approach by tai-
loring the program under test based on 0-1-CFA call graph
analysis of its tests to improve the effectiveness of oracle
data selection. For ease of presentation, we call the former
as basic SODS and the latter extension as extended SODS.

To evaluate SODS, we conducted an experimental study
on 11 real-world subject systems (including two C subjects

1In this paper, the oracle data refer to the variables to be
observed in software testing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...$15.00

http://dx.doi.org/10.1145/2970276.2970366

178

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 17,2022 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

and nine Java subjects). Through the study on the impacts
of α and fp, our SODS techniques are more effective when
α is set to 0 and fp is set to be differentiated (explained in
Section 3.3.2). Through the study on comparing dynamic
approaches and our static approach, our SODS is more effec-
tive than the dynamic approaches (including MAODS and
DODONA) in most cases, and is also much more efficient
than the dynamic approaches, especially MAODS.

In summary, the contributions of this paper are as follows.

• The first static approach to selecting oracle data based
on probabilistic substitution graph constructed from
definition-use chain analysis.

• A further extension for programs with analyzable test
code based on 0-1-CFA call graph analysis.

• An extensive experimental study on 11 real-world sub-
jects demonstrating that our static approach is more
effective and much more efficient than the existing dy-
namic approaches in most cases. Furthermore, for pro-
grams with analyzable test code (e.g., JUnit tests), our
extended static technique can be even more effective
than our basic static technique.

2. AN EXAMPLE
Figure 1 presents an example program, where the method

“factorial” is to calculate the factorial of a number using
the method “multiply”. To observe faults in this program
during software testing, developers need to construct a test
oracle, which consists of oracle data including internal vari-
ables and output variables. As variables may be defined
more than once (e.g., factorial is defined at Lines 4 and
10 respectively), we use a tuple between a variable and its
definition statement to represent a candidate oracle data.
Note that in this paper the concept of “defining a variable”
does not refer to variable declaration, but refers to the fact
that a variable is assigned a value by some statement. This
concept is adopted by the terminology of data-dependency
analysis [33, 53]. At Line 3, variable n is defined, which
means that Line 3 assigns a value to n and that variable n is
viewed as a candidate oracle data (denoted as o1). Similar,
variable i at Line 5 is also a candidate oracle data, denoted
as o3. However, variable n at Line 5 is not viewed as a can-
didate oracle data in our approach, because Line 5 does not
assign a new value to variable n but uses its value, which is
assigned at Line 3. That is, in order to decrease the number
of candidate oracle data, we consider only the defined vari-
ables as candidate oracle data. In inter-procedural analysis,
we also regard the variable whose value is assigned through
method call or return as a candidate oracle data. For exam-
ple, num1 defined at Line 17 and factorial defined at Line
13 (i.e., the first factorial at Line 13) are two candidate
oracle data, which are o7 and o5. By analyzing statements,
especially the variables defined by these statements, we con-
struct a set of candidate oracle data.

For the set of candidate oracle data, we analyze their
definition-use chains, which are used to measure the fault-
observing capability of candidate oracle data. In data-flow
analysis, a definition-use chain is the structure that consists
of the definition of one variable and the use of the vari-
able, and the former variable reaches the latter use without
other intervening definitions [50]. For example, the relation
between variable n at Line 3 and variable n at Line 5 is
regarded as a definition-use chain. As this paper targets or-

1 void factorial() { /∗ compute factorial of a non−negative
integer n, i.e., n!∗/

2 int n, factorial, i;
3 read(”Enter the number:”, n); // o1
4 factorial = 1; // o2
5 i = n; // o3
6 if (n < 0)
7 print(”wrong input is:”, n);
8 else {
9 if (n == 0)

10 factorial = 0;// o4
11 else {
12 while (i > 0) {
13 factorial = multiply(factorial, i);// o5
14 i = i − 1;} }// o6
15 print(”The result is:”, factorial);} }
16

17 int multiply(int num1, int num2) {// o7,o8
18 int result;
19 return result = num1 ∗ num2;}// o9

Figure 1: Example program

acle data selection among candidate oracle data, we adapt
the definition of a definition-use chain as a structure that
consists of two oracle data oi and oj satisfying that the def-
inition of the variable in oi uses the value of the variable
defined in oj without other intervening oracle data. In the
remaining of this paper, a definition-use chain refers to such
a structure on oracle data. For example, variable i at Line 5
and variable n at Line 3 form a definition-use chain. More-
over, observing the value of variable i at Line 5 may detect
faults resulting from the wrong value of variable n at Line
3. Therefore, variable i at Line 5 can be used as a substi-
tute for n at Line 3 in software testing. That is, based on
definition-use chains, we can construct substitution relation-
ships between candidate oracle data.

Software faults are typically induced via erroneous code,
and errors in code can be observed through oracle data. For
example, variable i at Line 5 is useful in detecting faults re-
sulting from Line 5 because an error in this statement (e.g.,
“i=n+1”) may produce a wrong value for i. Furthermore,
this oracle data is also useful in detecting faults resulting
from other statements (i.e., Line 3), which define the value
for variable n used by Line 5. Therefore, observing the value
of i at Line 5 may detect faults resulting from Lines 3 and 5.
Based on this insight, for a candidate oracle data, it is fea-
sible to statically identify the statements, whose faults may
be observed by this oracle data. Based on this information,
we can further estimate the capability of candidate oracle
data on observing faults.

As it is costly to construct a test oracle with all the can-
didate oracle data, it is necessary to determine the selec-
tion order of these candidate oracle data so that developers
may construct a high-quality test oracle with a small num-
ber of oracle data. Intuitively, the candidate oracle data
with large capability on observing faults tend to be selected
early when constructing a test oracle. However, it may be
less effective to select oracle data just based on the descen-
dent order of their fault-observing capability because some
candidate oracle data observe the faults resulting from the
same statements. For example, observing either the value
of the first i at Line 14 or the value of num2 at Line 17
may detect the faults resulting from Line 5. Although both
of these oracle data may have large capability on observing
faults, it is not so necessary to select both of them because
their fault-observing capability may overlap with each other.

179

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 17,2022 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

Therefore, during oracle data selection, it is necessary to
identify the set of statements in which each candidate or-
acle data may detect faults so as to avoid selecting oracle
data with significantly overlapping fault-observing capabil-
ity. That said, oracle data selection should aim to maximize
the fault-observing capability of the set of selected oracle
data, not to maximize the fault-observing capability of each
selected oracle data individually.

In practice, tests are usually not sufficient and test a pro-
gram partially [29]. Therefore, we can further improve the
effectiveness of static oracle data selection by focusing on
only the partial program being tested. For example, testers
want to test only the method “multiply” in Figure 1 using
some JUnit test. As the source code in the method “facto-
rial” is not tested by this JUnit test, the candidate oracle
data in “factorial” (i.e., from o1 to o6) should be excluded
when constructing a test oracle for the JUnit test. Similarly,
the definition-use chains occurring on these candidate oracle
data should also be excluded. Following this intuition, we
extend static oracle data selection for programs with ana-
lyzable test code, because the partial program tested by the
tests can be statically identified by program analysis.

3. STATIC ORACLE DATA SELECTION
In this section, we first present the details of our basic

static technique, including probabilistic substitution graph
construction (Section 3.1), fault-observing capability calcu-
lation (Section 3.2), and oracle data selection (Section 3.3).
Then we present our extended static technique in Section 3.4.
Finally, we present the complexity analysis in Section 3.5.

3.1 Constructing the Probabilistic Substitution
Graph

For any program under test, our static oracle data se-
lection first takes the definition-use chains of the whole
program as inputs to construct a probabilistic substitu-
tion graph, which presents the probability that a candidate
oracle data may be a substitute for others. In particular,
the definition-use chains can be automatically generated by
using off-the-shelf inter-procedural program analysis tools
(e.g., Crystal [57] andWALA [68]). Suppose the set of candi-
date oracle data is denoted as {o1, o2, . . . , on}, each of which
is a definition of a variable. In other words, a candidate ora-
cle data can be viewed as a tuple between a variable and its
position, denoting the observation of the variable at the po-
sition. For any two oracle data oi and oj (1 ≤ i �= j ≤ n), we
represent their definition-use chain by oi ⇐ oj , which shows
that the definition of the variable in oi uses the value of the
variable defined in oj . For Figure 1, the set of candidate
oracle data is {o1, o2, . . . , o9}, e.g., o1 refers to observing
n after Line 3 and o9 refers to observing result after Line
19. Based on the definition of definition-use chains (Sec-
tion 2), the example has the following definition-use chains:
o3 ⇐ o1, o7 ⇐ o2, o6 ⇐ o3, o8 ⇐ o3, o9 ⇐ o7, o9 ⇐ o8 and
o5 ⇐ o9. We regard the process of method call or return
as an assignment from one variable to another and thus get
inter-procedural definition-use chains like o7 ⇐ o2, o8 ⇐ o3,
and o5 ⇐ o9.

Then, we define the probabilistic substitution graph to
represent substitution relationships between candidate ora-
cle data. For any program, we define its probabilistic sub-
stitution graph (abbreviated as PSG) G = (V,E,W) as fol-
lows.

• V is the set of vertices, each of which represents a can-
didate oracle data. That is, V is denoted as {o1, o2, . . . , on}.

• E is the set of edges, each of which denotes a substi-
tution relationship between two candidate oracle data.
For any two candidate oracle data oi and oj , if oi ⇐ oj ,
the former may be a substitute for the latter, which is
denoted as oi � oj , and there is an edge from oj to oi.

• W is the set of weights on edges. Each weight denotes
the probability that each substitution relationship oc-
curs between a pair of candidate oracle data. If oi � oj
with some probability (denoted as P (oi � oj)), there
is an edge from oj to oi whose weight is P (oi � oj).

Intuitively, for any edge from oj to oi whose weight is
P (oi � oj), faults resulting from the wrong values of the
variable in oj may be caught by oi with the probability
P (oi � oj). That is, the candidate oracle data oi is likely to
be a substitute for oj when constructing a test oracle.
For any program, we construct its PSG as follows.
First, our basic static technique constructs vertices and

edges of its PSG based on its definition-use chains. Although
a variable may be in more than one statement, including
its definition statements and use statements, we take only
the tuple between the variable and the position immediately
after its definition statement as a candidate oracle data. For
any two candidate oracle data oi and oj , if oi ⇐ oj , we
construct an edge from oj to oi.
Second, our basic static technique assigns weights on edges

to reflect the probability on the substitution relationships.
As some substitution relationships occur on some execu-
tions, not all the executions, our basic static technique uses
the probability on the substitution relationships to estimate
how likely the wrong value of the variable in oj may be ob-
served by the value of the variable in oi for any edge from
oj to oi. In particular, if the two statements in oj and oi
are always executed together (e.g., o1 and o3 in Figure 1),
P (oi � oj) is set to 1. Otherwise, P (oi � oj) is set to the
probability that the statement in oi is executed given that
the statement in oj is executed, i.e., the execution probabil-
ity of the corresponding branch. Note that since our analysis
operates on static control-flow graphs and data-flow graphs,
the dynamic loop iteration number cannot be obtained and
all the loops will be treated as having one iteration. For
example, the while statement “while(i > 0)” in Line 12 of
Figure 1 is treated as “if(i > 0)” in our basic static tech-
nique. Thus, P (o6 � o3)=b̄1 ∗ b̄2 ∗ b3, where b̄1, b̄2, and
b3 represent the execution probability of the false branch
of Line 6, the execution probability of the false branch of
Line 9, and the execution probability of the true branch
of Line 12. Although this treatment is a coarse simplifi-
cation, it avoids producing circles in the PSG for analyzing
dependencies between oracle data. To illustrate, Figure 2(a)
presents the PSG of the example in Figure 1 with additional
dashed edges.

3.2 Estimating Fault-Observing Capability
From the macroscopic perspective, faults are induced by

developers’ errors in programming, which are demonstrated
by erroneous statements. From the microscopic perspective,
faults are reflected by variables’ values during execution.
Therefore, observing oracle data may detect faults result-
ing from erroneous statements.

For any candidate oracle data oi, observing it may detect
faults resulting from the statement in oi because any faults

180

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 17,2022 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

3:read(”Enter the
number: ”,n) //o1

5:i=n; //o3

14:i=i-1;//o6 17:Multiply(int num1,
int num2)//o7

17:Multiply(int num1,
int num2)//o8

4:factorial=1; //o2

19:return result=num1*num2;//o9

13:factorial=Multiply(factorial, i);//o5

(1) L-1 Substitution:
(2) L-2 Substitution:
(3) L-3 Substitution:
(4) L-4 Substitution: 1

1 1

1

1 2b3

(a) before selection

(1-fp)

3:read(”Enter the
number: ”,n) //o1

5:i=n; //o3

17:Multiply(int num1,
int num2)//o8

4:factorial=1; //o2

19:return result=num1*num2;//o9

13:factorial=Multiply(factorial, i);//o5

1 1

1

1 2b3

i=i-1;//o6

(1) L-1 Substitution:
(2) L-2 Substitution:
(3) L-3 Substitution:
(4) L-4 Substitution:

17:Multiply(int num1,
int num2)//o7

(b) after selection

Figure 2: Example Probabilistic Substitution Graph (PSG) (with transitive substitution)

in this statement may yield a wrong value to the variable in
oi.

For any other candidate oracle data oj , if oi � oj , the
definition of the variable in oi uses the value of the variable
in oj directly. Observing oi can potentially also detect faults
resulting from the statement in oj because a fault in this
statement may produce an incorrect value which in turn
may propagate to the definition of the variable in oi.

For any other candidate oracle data ok1 and ok2 (i �= k1∧
i �= k2), if oi � ok1 and ok1 � ok2 (i.e., the definition of the
variable in oi uses the variable in ok1 and the definition of
the latter uses the variable in ok2), observing oi may also
detect faults resulting from the statement in ok2 because
a fault in this statement may produce an incorrect value
that may propagate to the definition of the variable in oi
through the definition of the variable in ok1. If oi � ok1 �
. . . � oks (i �= k1, ..., i �= ks), it is likely to detect faults
resulting from the statements in ok1, ..., oks via observing oi.
Note that due to our simplification on loop statements, the
preceding analysis on transitive substitution relationships
does not produce circles like oi � ok1 � . . . � oi.

For any candidate oracle data oi, we traverse the PSG
to find the set of statements whose faults are likely to be
detected via observing oi. We denote this set as W (oi).
Obviously, W (oi) includes the statement in oi. For any oj
belonging to W (oi), it is likely to detect faults resulting from
the statement in oj via observing oi. That is, oi has the
capability on observing faults resulting from the statement
in oj . We denote this capability as FOC(i, j).

In particular, given two candidate oracle data oi and oj ,
we estimate the value of FOC(i, j) as follows. If oi and oj are
the same oracle data (i.e., i=j), FOC(i, i) = 1 because oi is
the most suitable oracle data to detect faults resulting from
the statement in oi itself. If there is an edge from oj to oi in
the PSG, we use the weight on this edge (i.e., P (oi � oj))
to measure FOC(i, j) because P (oi � oj) shows how likely
faults resulting from the wrong values of the variable in oj
may be caught by oi. In this circumstance, FOC(i, j) =
P (oi � oj). Supposing oi � ok1 � . . . � oks = oj is a path
(denoted as path) from oj to oi in the PSG, we use Formula 1
to estimate the FOC value resulting from this path.

FOC(path) = αs−1 ∗ P (oi � ok1) ∗ ... ∗ P (oks−1 � oks) (1)

Here α (which may be a constant or variable) is a pa-
rameter on measuring to what extent the substitution rela-

tionship transfers between two adjacent edges in paths with
length ≥2. Note that for any path of length 1 (i.e., s = 1),
the FOC value for the path would be P (oi � ok1). We will
empirically investigate the impact of α in Section 4. The
dashed edges in Figure 2(a) also illustrate the transitive sub-
stitution relationship along paths between oracle data, e.g.,
the L-i Substitution edge denotes the transitive substitution
relationship along paths with length i. In particular, L-1
Substitution, represented by solid edges in the figure, is ac-
tually a substitution relationship without transition. Since
there may be more than one path from oj to oi in the PSG,
we sum up the estimated FOC values resulting from all the
paths to calculate FOC(i, j). In particular, supposing there
are l paths (denoted as path1, path2, ..., pathl) from oj to oi
in the PSG, Formula 2 calculates the value of FOC(i, j) con-
sidering all paths from oj to oi. In particular, as these paths
share the same starting vertex (i.e., oj) and ending vertex
(i.e., oi), the value of FOC(i, j) cannot be larger than 1.
Furthermore, we are always able to consider all paths from
oj to oi because PSG is acyclic.

FOC(i, j) =

l∑

t=1

FOC(patht) (2)

We adopt a variant of the Floyd algorithm [21] by enu-
merating new paths from oj to oi and updating FOC(i, j)
when a vertex in V is added to the set of intermediate ver-
tices along paths. As a PSG may be represented by a sparse
matrix by discarding zero elements, we plan to refine our
basic technique via further optimizations, e.g., orthogonal
list representation [35] and Johnson’s algorithm [44], which
target storing and operating sparse matrices.

3.3 Selecting Oracle Data
Using the values of FOC(i, j), we can calculate the to-

tal capability of oi on observing faults in statements of the
program under test (denoted as FOC(i)) via Formula 3.

FOC(i) =
∑

oj∈W (oi)

FOC(i, j) (3)

Values of FOC(i) provide a basic guideline for selecting
oracle data. However, given two oracle data oi and oj , if
FOC(i, k) > 0 and FOC(j, k) > 0, both oi and oj can help
detect faults resulting from the statement in ok. Therefore,
if oi is already selected for detecting faults resulting from
the statement in ok, it may be less necessary to select oj

181

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 17,2022 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

for the same purpose. We use fp to measure the impact of
selected oracle data on unselected oracle data. Furthermore,
different numbers of oracle data may be used in different
circumstances. Therefore, we propose several heuristics for
oracle data selection in the following sub-sections:

Algorithm 1 Oracle data selection

1: for each i (1 ≤ i ≤ n) do
2: Selected[i]← false
3: Foc[i]← 0
4: end for
5: for each i (1 ≤ i ≤ n) do
6: for each j (1 ≤ j ≤ n) do
7: if FOC[i, j] > 0 then
8: Foc[i]← Foc[i] + FOC[i, j]
9: end if
10: end for
11: end for
12: for each j (1 ≤ j ≤ m) do
13: current← 0
14: k ← 0
15: for each i (1 ≤ i ≤ n) do
16: if not Selected[i] then
17: if Foc[i] > current then
18: current← Foc[i]
19: k ← i
20: end if
21: end if
22: end for
23: Selected[k]← true
24: Foc[k]← 0
25: for each i (1 ≤ i ≤ n) do
26: if FOC[k, i] > 0 then
27: for each s (1 ≤ s ≤ n) do
28: if k �= s ∧ FOC[s, i] >0 ∧ not Selected[s] then
29: Foc[s]← Foc[s]− FOC[s, i] ∗ fp
30: FOC[s, i]← FOC[s, i] ∗ (1− fp)
31: end if
32: end for
33: end if
34: end for
35: end for

3.3.1 Selection Algorithm
Algorithm 1 depicts our heuristics on determining the se-

lection order of candidate oracle data. Suppose that there
are totally n candidate oracle data to be selected. In the
algorithm, we use a boolean array Selected[i] (1 ≤ i ≤ n)
to record whether the candidate oracle data oi has been
selected, an array FOC[i, j] (1 ≤ i, j ≤ n) to record the
fault-observing capability of oi for observing faults in the
statement in oj , and Foc[i] (1 ≤ i ≤ n) to record the total
fault-observing capability of oi.

In Algorithm 1, Lines 1 to 4 perform initialization. Lines 5
to 11 calculate the values of Foc[i] (1 ≤ i ≤ n) based on the
values of FOC[i, j] (1 ≤ i, j ≤ n) according to Formula 3.
Lines 12 to 35 perform oracle data selection. In particular,

the loop body repeats m (m ≤ n) times to select m oracle
data. Within this loop, Lines 13 to 22 look for the candidate
oracle data (whose index is assigned to k) with the largest
fault-observing capability; Line 23 selects this oracle data by
assigning true to its variable Selected[k]; Line 24 assigns 0
to the total fault-observing capability of selected oracle data
to avoid duplicate selection.

Lines 25 to 34 adjust the fault-observing capability of
other candidate oracle data on the basis that candidate or-
acle data ok is selected. Here, we use fp (0 ≤ fp ≤ 1)
to parameterize how selected oracle data impact the fault-
observing capability of other candidate oracle data. Thus,
for different values of fp, Algorithm 1 yields different oracle
data selection strategies. Intuitively, the larger fp is, the
larger impact the selected oracle data ok has on any uns-

elected oracle data os, and thus the smaller the values of
Foc[s] and FOC[s, i] are. Figure 2(b) presents the up-
dated PSG after selecting o6 (marked as grey node) based
on Figure 2(a), where the grey areas represent adjusted FOC
values. For example, the FOC value between o3 and o1 is
now updated to 1∗ (1− fp) since o1 has been tested to some
extent by the selected o6.

3.3.2 Choice of the Parameter fp

As fp provides a means to control the impact of previ-
ous selections of oracle data on unselected oracle data, we
provide two strategies on the choice of the value of fp. In
an optimistic perspective, since the selection of ok in Algo-
rithm 1 would help observe faults in the statement of any oi
where FOC[k, i] > 0, there is no need to consider observing
faults for these statements. Thus, we can set the value of fp
to 1, so that Lines 25 to 34 in Algorithm 1 can ensure not
to consider faults resulting from the statements of oi where
FOC[k, i] > 0.
Furthermore, since the FOC values of an oracle data al-

ready reflect how the oracle data can help observe faults
in statements, we can utilize these values when setting the
value of fp. In particular, we make fp a differentiated value
for different oracle data because selected oracle data have
various impact on different unselected oracle data. That is,
we use an array fp[i] (1 ≤ i ≤ n) to record the fp value of oi
in this algorithm. Initially, the fp value for any oracle data
is 0 because no oracle data is selected. In Algorithm 1, we
implement this initialization by adding fp[i] ← 0 between
Lines 3 and 4. As soon as ok is selected, we update the fp
value for any oracle data oi where FOC[k, i] > 0, by adding
fp[i] ← fp[i] + FOC[k, i] and fp ← fp[i] between Lines
26 and 27. That is, as ok is selected, it adds more impact
of the selected oracle data on the fault-observing capability
of unselected oracle data and thus we increase the fp value
of any oracle data oi where FOC[k, i] > 0. Moreover, for
oi, the more times its fp is updated due to the selection of
some oracle data, the larger its fp value is and the smaller
the value of FOC[s, i] is (os represents any unselected ora-
cle data where FOC[s, i] > 0). That is, by increasing the fp
value of oi, Algorithm 1 prefers to not select the oracle data
os where FOC[s, i] > 0 to observe faults in the statement
of oi because these faults may already be detected by the
selected oracle data.

3.4 Further Extension
In practice, tests are usually not sufficient and actually

test a program partially. Therefore, it is not necessary to
consider all the substitution relationships between candidate
oracle data because some of them are not covered by exist-
ing tests. Furthermore, considering all these substitution
relationships, our basic static technique may select useless
oracle data and become less effective. Fortunately, for some
modern unit testing frameworks (e.g., JUnit), each test is
a code snippet including sequence of method invocations.
Thus it is possible to statically identify the parts of source
code tested based on the call-graph analysis of the test code
snippets. That is, for any program with tests in the form
of analyzable code snippets (e.g., JUnit tests), we further
extend the static technique to tailor the program based on
static call-graph analysis.

In particular, our extended technique first extracts a static
call graph of the tests (denoted as T) by using 0-1-CFA al-

182

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 17,2022 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

gorithm [30], which has been demonstrated to be efficient
and more precise than other common static algorithms, e.g.,
class hierarchy analysis [17] or rapid type analysis [4]. Based
on the static call graph, our extended technique constructs
definition-use chains by removing the candidate oracle data
that are not within the static call graph of T . Based on these
definition-use chains, our extended technique constructs a
PSG, which is actually a tailored PSG for the whole pro-
gram. Based on this PSG, our extended technique estimates
the fault-observing capability of candidate oracle data (Sec-
tion 3.2) and selects oracle data (Section 3.3). Further dis-
cussion on the comparison between the basic and extended
static techniques is referred to Section 5.1.

3.5 Complexity Analysis
Supposing that the total number of candidate oracle data

is n and the number of selected oracle data is m, we an-
alyze the time complexity of our basic static technique as
follows. The time complexity for constructing the PSG is
O(n). Since our basic static technique calculates paths in
the PSG based on a variant of the Floyd algorithm, the
time complexity for estimating the fault-observing capabil-
ity is O(n3) in the worst case. When α = 0, this complexity
can be further reduced to O(n). The time complexity for
oracle data selection in the worst case is O(mn2). Generally
speaking, the time complexity of our basic static technique
is O(n3) in the worst case, since m ≤ n.
Our extended static technique has the same stages as our

basic static technique when taking definition-use chains as
inputs. Thus, the time complexity of our extended static
technique is also O(n3) in the worst case. In particular, our
extended static technique needs to construct a static call
graph of T by 0-1-CFA, which may incur extra cost [30].
On the other hand, our extended static technique may also
reduce overheads due to the its tailored PSG. In particular,
as the PSG used by our extended static technique is more
sparse, our extended static technique may reduce overheads
during calculating fault-observing capability and selecting
oracle data. Furthermore, the cost of constructing a PSG
is also reduced as the program under test can be viewed as
being tailored. We further investigate the cost of the basic
static and extended static techniques in Section 4.7.2.

4. EXPERIMENTAL STUDY
Our study addresses the following research questions.

• RQ1: How do different configurations (i.e., α and fp)
impact the effectiveness of SODS?

• RQ2: How does SODS compare to the existing dy-
namic approaches in terms of both effectiveness and
efficiency?

• RQ3: How does the number of selected oracle data
influence the effectiveness of SODS?

4.1 Implementation and Supporting Tools
When implementing our SODS approach, we adopted the

static analysis tool Crystal2 for C subjects and the anal-
ysis tool WALA3 for Java subjects to identify definition-
use chains. Moreover, we do not analyze the definition-use
chains in libraries and take them as a black box in imple-
menting our SODS approach. In total, we spent two months

2https://www.cs.cornell.edu/projects/crystal/
3http://wala.sourceforge.net

in implementing the SODS approach. More details are avail-
able at the SODS homepage4.
We also reimplemented MAODS [62] and DODONA [46]

due to the lack of existing tool support. MAODS is the
first approach to oracle data selection, which runs test in-
puts against a large number of mutants and selects vari-
ables based on the number of mutants distinguished from
the original program by these variables. Later, targeting
only object-oriented programs, DODONA is proposed to se-
lect oracle data via analyzing the network centrality metrics
of variable relationship graph in execution traces. In par-
ticular, we use MutGen5 to generate mutants to implement
MAODS, and use Java PathFinder [66] to analyze dynamic
dataflow relations to implement DODONA strictly following
the prior work [46]. In total, we spent about three months
in implementing DODONA and MAODS.

Any of the preceding approaches, including our SODS and
the compared DODONA and MAODS, outputs a list of se-
lected oracle data, which can be manually augmented with
expected outputs to construct complete test oracles. The
same as the prior work [62, 46], testers can construct a com-
plete test oracle for Java subjects by adding an assertEqual
call for each oracle data in each given JUnit test, and con-
struct program oracles for C subjects since its tests are actu-
ally system tests. Furthermore, following prior work [46], if
a selected oracle variable is unstable (e.g., a random variable
that may yield different values during different executions of
the same test input), we removed it from the set of selected
oracle data.

4.2 Subjects, Tests, and Faults
We used two C subjects and nine Java subjects in this

study. The two C subjects are two unix utilities available at
Software-artifact Infrastructure Repository (SIR) [1]. The
nine Java subjects have been widely used in the literature
of software testing [75, 32], including the prior work on or-
acle data selection [46]. Each subject has a test suite ac-
cumulated during software development. The tests for the
C subjects are system tests, which are actually test inputs
without test oracles. The tests for the Java subjects are JU-
nit tests, which consist of test inputs and assertions on test
outputs. To evaluate fault-detection effectiveness of selected
oracle data, we ignore these original assertions by using the
ASM bytecode manipulation framework. Table 1 presents
the basic information of these subjects, where Columns 3-6
present the LOC without libraries and test code, the total
candidate oracle data number6, test number, and test cover-
age. Following prior work [46], we removed the tests incuring
compilation errors in Java PathFinder; the test coverage for
C/Java subjects was collected using Gcov/EclEmma7.

In the literature, mutation testing has been shown to be
effective in simulating real faults for software testing exper-
iments [40, 3]. So do the prior work on oracle data selec-
tion [46, 62]. Therefore, we also constructed faulty pro-
grams using mutation testing [76]. In particular, we used
MutGen [3]/Major [41] to generate all mutants for C/Java
subjects. Similar with the prior work [46], for each subject

4https://github.com/JunjieChen/sods
5http://www.csd.uwo.ca/faculty/andrews/software/
mutgen.zip
6Only candidate oracle data in the source code are consid-
ered here.
7http://www.eclemma.org/download.html.

183

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 17,2022 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

Table 1: Subjects
Subject Version LOC #OData #Test Coverage

Gzip 1.1.2 5,680 1,507 214 66.8%
Flex 2.4.7 10,459 1,800 525 77.4%

CSV [16] 1.1 1,382 2,233 208 88.7%
JDKIM [37] 0.2 1,777 2,600 61 48.9%
JCT [36] 1.7 1,808 2,889 148 88.5%
CLI [14] 1.2 1,978 2,871 191 94.1%
TAM [64] 0.5.1 2,372 4,643 233 87.9%
JMIME [39] 0.7.2 4,439 6,112 214 81.1%
CIO [13] 2.4 8,839 12,390 845 78.3%
DIG [18] 3.3.2 9,917 6,219 178 70.5%
JGT [38] 0.9.0 12,978 16,308 190 71.7%

Total — 61,629 59,572 3,007 —

Table 2: Strategies of our static approach
Approach

SODS(A/B) X
1 2 3 4 5 6 7 8

α 0 0 0.25 0.25 0.5 0.5 1 1

fp 1 d 1 d 1 d 1 d

program, we constructed 20 mutant groups, each of which
consists of 40 different randomly selected mutants, i.e., 800
mutation faults in total for each subject.

4.3 Independent Variables (IVs)
We consider the following independent variables.

IV1: Oracle Data Selection Approaches. We compare
our SODS approach with two state-of-the-art dynamic ap-
proaches, MAODS [62] and DODONA [46].
IV2: SODS Configurations. We consider various con-
figurations of our SODS approach by varying the values of
the two parameters α and fp. Table 2 summarizes the six-
teen strategies of our static approach with various values
on α and fp. For ease of representation, we use SODSA X
/SODSB X (X=1, 2,. . . , 8) to denote the strategies of our
basic/extended static technique with various settings on α
and fp. For α, we assign its value as 0, 0.25, 0.5, 1 respec-
tively, and for fp, we assign a differentiated value (abbrevi-
ated as d in this table) or an uniform value (i.e., 1).
IV3: Sizes of Selected Oracle Data. This variable con-
cerns with the number of oracle data selected when con-
structing a test oracle. Similar with previous work [62,
46], we use 10 oracle data as the default configuration. In
addition, in practice, testers typically construct 1-10 asser-
tions for each test input [24]. Therefore, we also investigate
whether the comparison results between our approach and
the existing approaches are influenced by different sizes of
selected oracle data from 1 to 10.

4.4 Dependent Variables (DVs)
The dependent variables considered in our study consist

of the rate of faults detected by the selected oracle data and
the total time in oracle data selection. The former measures
the effectiveness, whereas the latter measures the efficiency.

4.5 Experimental Process
First, we applied our basic technique to each subject, our

extended technique to each Java subject, the dynamic ap-
proach MAODS to each C subject8, and the dynamic ap-
proach DODONA to each Java subject9, recording the ora-
cle data selection order and the total time spent on oracle
data selection.

8We did not apply MAODS to Java subjects because prior
work has shown that DODONA is more effective than
MAODS for Java programs [46]. In particular, for each C
subject, we generated mutants using MutGen and then fed
all the mutants and the whole test suite to MAODS.
9We did not apply DODONA to C subjects because it was
designed for object-oriented programs [46].

To evaluate the fault-detection effectiveness of selected or-
acle data, we applied each test input with the selected oracle
data to the faulty programs, recording the faults detected
by each oracle data. In particular, we first obtained its ex-
pected value for the corresponding test input by recording its
actual value through code instrumentation during the origi-
nal program execution. Then we checked whether the actual
value of this oracle data on the faulty program is the same
as the corresponding expected value. If not, this oracle data
detects the corresponding fault. For each subject, based on
the faults that each oracle data detects, we calculate the rate
of faults detected by the set of oracle data selected by each
approach on 20 different mutant groups (i.e., 800 faults).

All the experiments were conducted on a workstation with
Intel E5504 Quad-Core Processor 2.0GHz and 100G mem-
ory, running Ubuntu 12.04.

4.6 Threats to Validity
The main threat to construct validity is concerned with

the metrics used to evaluate the effectiveness and efficiency
of the studied approaches. To reduce this threat, we used
the widely used metrics in software testing, i.g., the rate of
fault detection as well as the approach overhead.

The threats to internal validity mainly lie in the imple-
mentations of the dynamic and static approaches. Since
the implementation and raw experimental data of MAOD-
S/DODONA are not accessible, with the aid of their au-
thors, we strictly followed the prior work, and also ensured
that our implementation produced similar results with prior
work [62, 46]. To reduce the threat of implementing our
static approach, we used existing static analysis tools (i.e.,
Crystal and WALA). However, we introduced the following
simplifications when implementing our approach. First, we
assumed that every branch within a conditional statement
has the same execution probability because it is extremely
hard to predict the execution probabilities of branches stat-
ically and precisely. Second, aliasing is not handled. Third,
each array variable, object variable, heap variable, or mem-
ber variable of a class, is treated as a single variable in con-
structing the set of candidate oracle data. In the future, we
will further improve these simplifications by adopting more
advanced analysis techniques.

The threats to external validity mainly lie in the used
subjects, faults, and tests. Although we used more subjects
than the prior work [62, 46] and the subjects are widely
used in the literature of software testing, they may not be
representative of other programs. Although mutation faults
have been demonstrated to be reasonable in the evaluation
of testing techniques [40, 3], mutation faults may still not
be representative of real faults in practice. To reduce these
threats, we will conduct experiments on practical programs
with real faults in the future. Furthermore, another external
threat lies in the used tests – following the DODONA work,
we removed some tests that incur compiling errors on Java
PathFinder.

4.7 Results and Analysis
4.7.1 RQ1: Configuration Impacts
Table 3 presents the average fault-detection rate of SODS

with various values of α and fp for a given oracle data set.
The results in this section are based on 10 selected ora-
cle data. Rows 3 to 13 present the average fault-detection
rate of our static approach for each subject respectively,

184

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 17,2022 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

Table 3: Average rate of faults detected by the oracle data selected by SODS (%)
Approach

SODSA X SODSB X
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Gzip 38.3 38.3 39.9 37.5 38.8 36.5 43.5 43.4 — — — — — — — —
Flex 20.5 20.5 20.4 21.0 20.4 21.1 20.5 21.0 — — — — — — — —

CSV 34.9 34.9 38.4 37.8 38.4 37.8 39.3 39.3 32.9 32.9 39.5 37.8 39.5 37.8 40.4 40.1
JDKIM 22.3 22.3 20.9 19.0 19.0 19.0 19.4 19.4 24.6 24.6 22.0 24.6 22.0 22.0 22.0 22.0
JCT 45.3 45.3 35.5 35.9 35.8 35.8 35.6 35.9 50.6 50.8 38.0 35.8 37.8 35.8 37.9 37.9
CLI 60.4 61.6 60.9 61.6 59.8 62.0 55.9 55.9 61.3 61.3 58.6 61.6 57.5 61.1 53.4 53.4
TAM 52.9 52.9 47.6 54.5 52.4 52.9 45.3 45.3 53.0 53.0 47.3 53.3 47.8 55.4 50.5 50.5

JMIME 48.5 48.5 47.8 43.4 44.3 43.5 31.9 31.9 49.9 49.9 43.3 48.1 42.6 43.3 32.9 32.9
CIO 29.6 29.6 27.5 31.1 32.4 33.3 29.3 29.3 30.0 30.0 31.0 33.5 19.4 28.6 13.9 13.9
DIG 30.0 30.0 27.6 29.8 27.6 27.6 28.6 28.6 34.6 34.6 27.3 27.0 27.3 24.3 26.0 26.4
JGT 42.1 42.1 47.4 44.9 46.4 46.4 45.8 45.8 45.0 45.0 46.9 46.1 46.4 45.5 44.5 44.5

Avg. 38.6 38.7 37.6 37.9 37.7 37.8 35.9 36.0 42.4 42.5 39.3 40.9 37.8 39.3 35.7 35.7

Table 4: Overall fault-detection rates (%)
MAODS/DODONA SODSA 2 SODSB 2

Subject Avg. SD. Avg. SD. Avg. SD.

Gzip 38.5 7.09 38.3 7.26 – –
Flex 18.1 7.73 20.5 8.68 – –

Avg. 28.3 – 29.4 – – –

CSV 43.6 7.09 34.9 7.45 32.9 7.66
JDKIM 23.4 4.46 22.3 6.53 24.6 6.19
JCT 44.0 8.33 45.3 8.46 50.8 8.03
CLI 60.0 7.30 61.6 8.24 61.3 8.13
TAM 51.9 9.17 52.9 7.88 53.0 8.05
JMIME 39.9 9.78 48.5 7.63 49.9 9.23
CIO 21.6 8.04 29.6 7.96 30.0 6.59
DIG 35.6 8.66 30.0 6.93 34.6 7.04
JGT 25.9 7.62 42.1 6.19 45.0 6.18

Avg. 38.4 – 40.8 – 42.5 –

and the last row presents the average fault-detection rate
of our static approach for all the subjects. In particular,
as SODSB targets only Java subjects, its results for the C
subjects are not available. The bold numbers in Columns 2
to 9 (Columns 10 to 17) represent the top 2 largest average
fault-detection rate of SODSA (SODSB) for each subject.

From Table 3, the average fault-detection rate of SODSA 2
is mostly larger than the other strategies of SODSA. Even
when SODSA 2 is not within the top 2 implementations
(i.e., for Gzip, Flex, CSV, CIO and JGT), the difference be-
tween SODSA 2 and the best technique is at most 5.2%. In
summary, for SODSA, the best configuration of the two pa-
rameters is that α = 0 and fp = d. Similarly, for SODSB, all
configurations with fp = d are usually at least as effective
as all configurations with fp = 1, while all configurations
with α = 0 usually perform better than the other config-
urations. Thus, for SODSB, the best configuration of the
two parameters is also that α = 0 and fp = d. This ob-
servation indicates that, substitution relationship transfer
does not tend to improve the effectiveness of oracle data
selection, but considering differentiated impacts of selected
oracle data on the unselected oracle data can improve the
effectiveness. Through the preceding analysis, the default
values of the two parameters are set to be that α = 0 and
fp = d (i.e., SODSA 2 and SODSB 2) when applying our
static approach for the rest of this paper and practical usage.

4.7.2 RQ2: Comparison with Dynamic Approaches
Table 4 presents overall fault-detection rates for our de-

fault static techniques and state-of-the-art dynamic tech-
niques. In the table, “Avg” and “SD” stand for average
fault-detection rates and standard deviations. Note that
the SODSB 2 technique does not apply to the C subjects.
From the table, SODSA 2 is more effective than MAODS
for the C subjects on average. For the Java subjects, both
SODSA 2 and SODSB 2 are more effective than DODONA
on average. More specifically, SODSA 2/SODSB 2 is able
to outperform DODONA for 6/7 out of the 9 Java subjects.

To learn whether our static approach is significantly differ-
ent from the dynamic approaches, we further perform statis-
tical analysis. We first performed the Kolmogorov-Smirnov
test [69], whose results demonstrated that the population on

Table 5: Paired sample T test (α = 0.05)
Subject

SODSA 2- SODSB 2- SODSA 2- SODSB 2-
DODONA DODONA MAODS SODSA 2

Gzip — — 0.818 —
Flex — — 0.000(+) —

CSV 0.000(-) 0.000(-) — 0.065
JDKIM 0.330 0.234 — 0.003(+)
JCT 0.398 0.000(+) — 0.000(+)
CLI 0.336 0.443 — 0.267
TAM 0.408 0.398 — 0.905
JMIME 0.000(+) 0.000(+) — 0.037(+)
CIO 0.001(+) 0.000(+) — 0.724
DIG 0.000(-) 0.402 — 0.000(+)
JGT 0.000(+) 0.000(+) — 0.000(+)

the faults detected by the selected oracle data follows the
normal distribution, which is the precondition of the paired
sample T test. Then we performed a paired sample T test
(with the significance level α of 0.05) [26] on the raw fault-
detection rates of the selected oracle data (i.e., on 20 mutant
groups) for each subject. Table 5 lists the p-values of the T
test, where “(+)” indicates that the former approach signifi-
cantly outperforms the latter and“(-)” indicates that the lat-
ter approach significantly outperforms the former. In other
words, the results without any marks (i.e., “(+)” and “(-)”)
indicate that the compared approaches have no significant
difference. From the table, SODSA 2 and DODONA have
no significant difference for four Java subjects (i.e., JDKIM,
JCT, CLI and TAM). SODSB 2 and DODONA also have no
significant difference for four Java subjects. SODSA 2 and
MAODS have no significant difference for Gzip. Generally
speaking, for almost half subjects, our static approach has
no significant difference with the dynamic approaches.

For the remaining subjects, SODS and the dynamic tech-
niques have significant difference. In particular, SODSA 2
significantly outperforms MAODS for Flex, while MAODS
cannot significantly outperform SODSA 2 for any C sub-
ject. For Java subjects, SODSA 2 significantly outperforms
DODONA for 3 subjects (i.e., JMIME, CIO, and JGT),
whereas DODONA significantly outperforms SODSA 2 for
2 subjects (i.e., CSV and DIG). Furthermore, SODSB 2 sig-
nificantly outperforms DODONA for 4 subjects (i.e., JCT,
JMIME, CIO, and JGT), whereas DODONA only signifi-
cantly outperforms SODSB 2 for CSV. In summary, SODSA 2
is at least as effective as MAODS for all C subjects, while
SODSB 2 is at least as effective as DODONA (significantly
better than DODONA for 4 of the 9 Java subjects) except
for the smallest subject CSV.

Furthermore, as our extended technique aims to improve
the effectiveness of our basic static technique for programs
tested under the JUnit testing framework, we further com-
pare our basic technique and our extended technique based
on the same paired sample T test. From the last column
of Table 5, we observe that these two techniques have no
significant difference for 4 subjects (i.e., CSV, CLI, TAM
and CIO). For all the 5 remaining Java subjects, SODSB 2
significantly outperforms SODSA 2. That is, through tailor-
ing the PSG by removing the definition-use chains that are

185

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 17,2022 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

Table 6: Execution time (minutes)
Approach

SODSA X SODSB X
MAODS DODONA

2 Max 2 Max

Gzip 0.31 0.34 — — 10,620.70 —
Flex 0.46 0.53 — — 11,606.03 —

CSV 0.51 0.51 0.83 0.89 — 35.35
JDKIM 0.47 0.56 0.35 0.40 — 0.57
JCT 0.61 0.63 1.64 1.74 — 1.40
CLI 0.45 0.45 0.32 0.40 — 0.38
TAM 0.73 0.74 0.94 0.99 — 0.63
JMIME 1.05 1.11 0.87 0.91 — 43.45
CIO 3.00 3.20 3.73 3.85 — 192.33
DIG 1.24 1.33 3.19 3.39 — 0.45
JGT 4.07 4.15 9.45 18.27 — 317.30

not covered by tests, our extended static technique further
improves the effectiveness of our basic static technique.

Table 6 presents the execution time of the static and dy-
namic approaches on selecting 10 oracle data. As the space
is limited and the execution time for different configurations
of our approach is close, we present the time cost of only our
default configuration (i.e., X=2), and the maximum time
cost among all configurations of our approach. The results
show that the cost for DODONA ranges from 0.38 minutes
to 317.30 minutes, and the cost for MAODS ranges from
10,620.70 to 11,696.03 minutes. In contrast, the execution
time for our default SODSA 2 and SODSB 2 only ranges
from 0.31 minutes to 9.45 minutes, and even the cost for the
most expensive configuration of our approach only ranges
from 0.34 minutes to 18.27 minutes. It is clear that our
techniques are much more efficient than MAODS. Compar-
ing our techniques with DODONA on Java subjects, the
execution time of our static techniques with default configu-
rations is much smaller than that of DODONA on 4 subjects
(i.e., CSV, JMIME, CIO, and JGT), whereas for the remain-
ing Java subjects the execution time of our static techniques
is close to that of DODONA. We suspect the reason for the
later observation to be that the source code of the latter
subjects contains few complex structures such as loops so
that it is less time-consuming to run these subjects with
tests and analyze the execution information. In general, our
SODSA 2 and SODSB 2 techniques cost less than 10 min-
utes for any Java subject, whereas DODONA is not stable
and can cost more than 300 minutes. Therefore, our static
techniques clearly demonstrate their superiority to the dy-
namic approaches in terms of efficiency.

4.7.3 RQ3: Impacts of Selected Oracle Data Size
In this section, we further investigate the effectiveness

of all the studied techniques when selecting 1 to 10 ora-
cle data. Table 7 presents the average fault-detection rate
of each studied technique for each subject when using dif-
ferent numbers of oracle data10. In the table, each column
presents the results for different techniques (M, D, SA, and
SB denotes MAODS, DODONA, SODSA 2, and SODSB 2,
respectively) with different sizes of oracle data set.

From this table, SODSA 2 outperforms MAODS for both
C subjects when using more than 7 oracle data. When us-
ing no more than 7 oracle data, either SODSA 2 or MAODS
outperforms the other only in one of the two C subjects. The
reason is that MAODS is directly based on the dynamic ef-
fectiveness of oracle data, and tend to be more precise when
using a smaller number of oracle data. Surprisingly, on the
average of all Java programs, our SODSA 2 and SODSB 2
techniques consistently outperform DODONA for all the 10
different oracle data set sizes, demonstrating the promis-
ing future of static oracle selection. For example, when or-

10The results of “Size=10” are the same with the average
fault-detection rates in Table 4.

Table 8: Comparison using same/different test suite
Size= 1 2 3 4 5 6 7 8 9 10

Same 7 7 7 9 9 9 9 9 10 10
Different 4 4 4 5 5 5 5 5 6 6

acle data size is 9, DODONA detects 35.4% faults, while
SODSA 2 and SODSB 2 detect 39.7% and 41.5% faults, re-
spectively. Another interesting finding is that SODSA 2 is
competitive comparing to SODSB 2 when using ≤8 oracle
data, further demonstrating the effectiveness of SODS.

5. DISCUSSION
5.1 General v.s. Test-Specific

Based on whether oracle data are selected for some spe-
cific tests or any tests, oracle data selection can be classi-
fied into general approaches (e.g., SODSA) and test-specific
approaches (e.g., MAODS, DODONA and SODSB). Gen-
eral approaches may be more applicable at an early stage of
software development without test inputs. For example, in
practice, modern code base usually contains a large number
of assertions, and the developers typically start to construct
the test oracle at an early stage of software development
when no test inputs have been given yet. On the contrary,
test-specific approaches may be more applicable for any spe-
cific test suite consisting of only test inputs.

Furthermore, in software evolution where test suites are
continuously refined, it is cost-effective to use general ap-
proaches rather than test-specific approaches, because test-
specific approaches may be less effective for test suites that
are not used in oracle data selection. To verify this hypoth-
esis, we took MAODS as a representative of test-specific
approaches and conducted a small experiment on Flex using
two randomly constructed test suites, each of which con-
sists of 50 randomly selected test inputs. Then, we fed
one test suite to MAODS, and evaluated the oracle data
selected by MAODS with this test suite as well as with the
other test suite on 40 randomly selected mutants. Table 8
presents the number of faults detected by each oracle data
set where“Same”/“Different”denotes the situation where the
same/different test suite is used in oracle data selection and
evaluation. MAODS performs much worse when different
test suites are used in oracle data selection and evaluation.
Therefore, in test-suite evolution, general approaches tend
to be more effective than test-specific approaches because
the latter require testers to re-select oracle data from time
to time to keep the selected oracle data effective.

5.2 Should We Go with More Oracle Data?
Section 4.7.3 shows that our static approach is stable, and

more effective than dynamic techniques in most cases for var-
ious oracle data sizes from 1 to 10. However, it is not clear
how the comparison results change in case of even larger
oracle data sizes. Therefore, we further investigated the ef-
fectiveness of all the studied techniques when selecting 10
to 50 oracle data. Due to the space limitation, we show
the results of using 5 to 50 oracle data on two Java sub-
ject programs in Figure 3 since the other subjects follow a
similar pattern. In each sub-figure, the x axis represents
the sizes of selected oracle data, e.g., s10 denotes using 10
oracle data; the y axis represents the fault-detection rates;
the white, gray, and red boxplots represent the DODONA,
SODSA 2, and SODSB 2, respectively. We can find that
the effectiveness of different oracle data selection techniques
tends to become saturate when using larger oracle data sizes.
In addition, using more than 10 oracle data cannot provide

186

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 17,2022 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

Table 7: Impacts of different oracle sizes from 1 to 9
Size=1 Size=2 Size=3 Size=4 Size=5 Size=6 Size=7 Size=8 Size=9

Sub. M/D SA SB M/D SA SB M/D SA SB M/D SA SB M/D SA SB M/D SA SB M/D SA SB M/D SA SB M/D SA SB

Gzip 11.8 13.1 – 11.9 14.3 – 34.5 21.3 – 37.4 21.3 – 37.4 24.4 – 37.4 24.4 – 37.4 24.6 – 37.4 38.1 – 37.5 38.3 –
Flex 15.3 13.4 – 16.0 13.8 – 16.0 18.1 – 16.0 18.1 – 16.0 20.4 – 16.0 20.4 – 16.0 20.5 – 17.6 20.5 – 17.6 20.5 –

Avg. 13.6 13.2 – 14.0 14.0 – 25.2 19.7 – 26.7 19.7 – 26.7 22.4 – 26.7 22.4 – 26.7 22.6 – 27.5 29.3 – 27.6 29.4 –

CSV 9.9 14.8 9.9 29.1 16.4 17.9 39.5 19.0 17.9 39.5 24.5 19.3 39.5 25.9 21.9 39.5 27.6 22.1 43.6 32.5 26.3 43.6 34.6 29.8 43.6 34.9 31.1
JDKIM 3.8 9.6 9.6 11.3 9.6 9.6 11.3 9.6 19.0 11.3 9.6 23.5 11.3 18.8 23.5 11.3 18.8 23.5 13.4 18.8 23.5 13.4 19.5 23.5 13.4 22.3 24.3
JCT 4.0 7.6 7.6 42.5 43.9 49.3 42.5 44.5 49.9 42.5 44.5 49.9 42.9 44.5 49.9 43.0 44.5 49.9 43.0 44.5 49.9 43.0 44.5 50.5 44.0 44.5 50.6
CLI 41.4 48.6 20.3 52.6 51.3 48.6 52.8 51.4 51.3 53.0 55.1 53.0 53.0 56.5 53.5 60.0 59.6 57.0 60.0 59.6 57.1 60.0 60.1 59.0 60.0 60.1 61.3
TAM 5.9 12.3 20.3 5.9 32.0 29.4 10.5 33.6 40.6 10.5 33.6 41.9 29.9 33.6 41.9 38.8 39.4 46.9 38.8 39.4 46.9 38.8 46.9 48.4 39.3 51.5 50.8
JMIME 23.4 25.3 25.4 23.4 33.6 33.8 24.3 39.6 35.0 24.3 40.0 35.0 24.3 41.3 35.0 26.1 41.3 41.0 27.0 41.8 44.8 27.0 45.5 45.3 39.9 47.6 48.0
CIO 9.3 0.0 5.4 11.1 4.3 5.8 11.1 16.8 6.3 12.6 22.3 18.8 13.4 22.3 18.8 13.5 25.4 24.3 13.6 25.8 24.6 13.6 26.0 24.9 16.5 26.1 28.1
DIG 12.9 18.6 13.1 12.9 18.6 13.1 12.9 26.1 13.3 12.9 26.3 13.4 35.4 26.3 13.4 35.4 27.8 13.8 35.4 28.1 13.8 35.4 28.1 13.8 35.6 28.1 34.6
JGT 0.0 8.8 8.8 25.0 17.6 40.6 25.0 41.1 41.0 25.0 41.4 41.3 25.0 41.4 44.4 25.0 41.4 44.4 25.9 41.9 44.9 25.9 42.0 44.9 25.9 42.0 45.0

Avg. 12.3 16.2 13.4 23.8 25.3 27.6 25.5 31.3 30.5 25.7 33.0 32.9 30.5 34.5 33.6 32.5 36.2 35.9 33.4 36.9 36.9 33.4 38.6 37.8 35.4 39.7 41.5

Figure 3: Results for large oracle data sizes

much improvements in fault detection. Therefore, given the
costs of manually determining the expected value for each
oracle data in practice, our default setting of using 10 oracle
data can be cost effective.

5.3 Practical Values of Oracle Data Selection
Shown in a recent survey [5], the oracle costs of human

involvement include two aspects: 1) writing test oracles and
2) evaluating test outcomes, and prior work on oracle data
selection [62, 46] (same for our work) can effectively reduce
efforts for the first aspect by guiding testers to code loca-
tion/variables when writing test oracles [5]. With our ap-
proach, testers can identify a set of oracle data, which may
serve as the variables to be observed in test assertions. To
create a complete test oracle, testers need to define the ex-
pected value for each oracle data. Note that there can be
little human involvement in the case of regression testing,
since the values of selected oracle data for an old version
can be automatically recorded, and then utilized to auto-
matically generate the expected values of oracle data for a
new version. In the future, we will further reduce the oracle
cost for evaluating test outcomes beyond regression testing.

6. RELATED WORK
Our work is mostly related to oracle data selection. Staats

et al. [62, 28] proposed the first dynamic approach based
on mutation testing. Later, targeting object-oriented pro-
grams, Loyola et al. [46] proposed another dynamic approach,
which selects oracle data via analyzing the network central-
ity metrics of variable relationship graph in execution traces.
Similar to oracle data selection, Voas and Miller [67] pro-
posed to identify some positions that traditional software
testing can hardly detect faults by mutation analysis like
Staats et al. [62] and add assertions at these positions. Our
work presents the first static approach to the same oracle

data selection problem. Unlike dynamic approaches, our
approach does not rely on execution traces, and thus can
overcome intrinsic limitations of dynamic approaches.

As the oracle data selected by our approach can be used
for constructing test oracles, our work is also related to test
oracle generation [45, 27, 61, 65, 51, 6, 49, 47, 63, 2, 58, 79,
78, 72, 9, 10, 43, 70]. Most work in the literature automates
test oracle generation based on specifications [55, 8, 54, 20,
19]. Fraser and Zeller [25] proposed μTest to generate asser-
tions (not oracle data) by comparing the trace information
of a correct program and its mutants. Furthermore, program
invariants generated by various tools (e.g., Daikon [22, 23],
DySy [15] and iDiscovery [77]) can also serve as test ora-
cles. Fully automated oracle generation techniques usually
either require formal program specifications, or cannot dis-
cover faults for the current program version since those tech-
niques summarize the behaviors of the current version as test
oracles. Therefore, following existing work for oracle data
selection [62, 46], this work aims to support the creation of
test oracles, rather than completely generate it.

Besides, our work is also related to testing adequacy cri-
teria based on test oracles. Ken and David [42] defined state
coverage criterion, which decides whether all output defining
statements are covered by an oracle through investigating
program slicing. Schuler and Zeller [59, 60] proposed the
concept of checked coverage, which measures the extent to
which the code is checked by the test oracle through dynamic
slicing. Recently, Zhang et al. [74] utilized oracle-related fea-
tures (also other features) to predict test adequacy.

7. CONCLUSION AND FUTURE WORK
In this work, we propose the first static oracle data selec-

tion approach (SODS) and its extension. The experimental
study demonstrates that our static approach is more effec-
tive and much more efficient than state-of-the-art dynamic
approaches in most cases. For Java programs with JUnit
tests, our extension further improves the effectiveness of our
basic technique. In the future, we will extend our work
by investigating how to help testers determine the expected
values of oracle data. Furthermore, as our static approach
may also suffer from the intrinsic limitation (e.g., missing
dynamic class loading) of static analysis, we plan to further
combine the advantageous of dynamic and static approaches.

8. ACKNOWLEDGEMENT
This work is partially supported by the National Basic Re-

search Program of China (973) under Grant No. 2015CB352201,
and the National Natural Science Foundation of China un-
der Grant No. 61421091, 91318301, 61225007, 61529201,
61522201, 61272157. This work is also partially supported
by NSF Grant No. CCF-1566589, Google Faculty Research
Award, and UT Dallas start-up fund.

187

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 17,2022 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

9. REFERENCES
[1] http://sir.unl.edu/portal/index.php.

[2] J. H. Andrews. Deriving state-based test oracles for
conformance testing. In WODA, pages 9–16, 2004.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche. Is
mutation an appropriate tool for testing experiments?
In ICSE, pages 402–411, 2005.

[4] D. F. Bacon and P. F. Sweeney. Fast static analysis of
C++ virtual function calls. OOPSLA, 31(10):324–341,
1996.

[5] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and
S. Yoo. The oracle problem in software testing: A
survey. TSE, 41(5):507–525, 2015.

[6] L. C. Briand, M. D. Penta, and Y. Labiche. Assessing
and improving state-based class testing: A series of
experiments. TSE, 30(11):770–793.

[7] C. Cadar, D. Dunbar, and D. R. Engler. Klee:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[8] A. Carzaniga, A. Goffi, A. Gorla, A. Mattavelli, and
M. Pezzè. Cross-checking oracles from intrinsic
software redundancy. In ICSE, pages 931–942, 2014.

[9] W. Chan, S. Cheung, J. C. Ho, and T. Tse. Reference
models and automatic oracles for the testing of mesh
simplification software for graphics rendering. In
COMPSAC, pages 429–438, 2006.

[10] W. K. Chan, S.-C. Cheung, J. C. Ho, and T. Tse. Pat:
A pattern classification approach to automatic
reference oracles for the testing of mesh simplification
programs. JSS, 82(3):422–434, 2009.

[11] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang,
L. Zhang, and B. Xie. Test case prioritization for
compilers: A text-vector based approach. In ICST,
pages 266–277, 2016.

[12] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang,
L. Zhang, and B. Xie. An empirical comparison of
compiler testing techniques. In ICSE, pages 180–190,
2016.

[13] Commons IO homepage.
http://commons.apache.org/proper/commons-io.

[14] Commons CLI homepage.
http://commons.apache.org/cli.

[15] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy:
Dynamic symbolic execution for invariant inference. In
ICSE, pages 281–290, 2008.

[16] Commons CSV homepage.
http://commons.apache.org/proper/commons-csv.

[17] J. Dean, D. Grove, and C. Chambers. Optimization of
object-oriented programs using static class hierarchy
analysis. In ECOOP, pages 77–101, 1995.

[18] Commons Digester homepage. http:
//commons.apache.org/proper/commons-digester.

[19] L. K. Dillon and Y. S. Ramakrishna. Generating
oracles from your favorite temporal logic
specifications. In FSE, pages 106–117, 1996.

[20] L. K. Dillon and Q. Yu. Oracles for checking temporal
properties of concurrent systems. In FSE, pages
140–153, 1994.

[21] M. J. Dinneen, G. Gimel’farb, and M. C. Wilson.
Introduction to Algorithms, Data Structures and
Formal Languages. Creative Commons License, 2013.

[22] M. D. Ernst. Dynamically discovering likely program
invariants. PhD thesis, University of Washington,
2000.

[23] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants.
SCP, 69(1):35–45, 2007.

[24] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and
F. Padberg. Does automated white-box test
generation really help software testers? In ISSTA,
pages 291–301, 2013.

[25] G. Fraser and A. Zeller. Mutation-driven generation of
unit tests and oracles. TSE, 38(2):278–292, 2012.

[26] J. E. Freund and G. A. Simon. Modern elementary
statistics, volume 256. Prentice-Hall Englewood Cliffs,
New Jersey, 1967.

[27] K. Frounchi, L. C. Briand, L. Grady, Y. Labiche, and
R. Subramanyan. Automating image segmentation
verification and validation by learning test oracles.
IST, 53(12):1337–1348, 2011.

[28] G. Gay, M. Staats, M. Whalen, and M. P. Heimdahl.
Automated oracle data selection support. TSE,
41(11):1119–1137, 2015.

[29] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A.
Alipour, and D. Marinov. Comparing non-adequate
test suites using coverage criteria. In ISSTA, pages
302–313, 2013.

[30] D. Grove, G. DeFouw, J. Dean, and C. Chambers.
Call graph construction in object-oriented languages.
In OOPSLA, pages 108–124, 1997.

[31] D. Hao, L. Zhang, M.-H. Liu, H. Li, and J.-S. Sun.
Test-data generation guided by static defect detection.
JCST, 24(2):284–293, 2009.

[32] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and
H. Mei. A unified test-case prioritization approach.
TOSEM, 24(2):10, 2014.

[33] M. J. Harrold and M. L. Soffa. Efficient computation
of interprocedural definition-use chains. TOPLAS,
16(2):175–204, 1994.

[34] M. Höschele, J. P. Galeotti, and A. Zeller. Test
generation across multiple layers. In SBST, pages 1–4,
2014.

[35] J. Hummel, L. J. Hendren, and A. Nicolau. A
language for conveying the aliasing properties of
dynamic, pointer-based data structures. In IPDPS,
pages 208–216, 1994.

[36] Joda Convert homepage.
http://www.joda.org/joda-convert.

[37] James jDKIM homepage.
http://james.apache.org/jdkim.

[38] JGraphT homepage. http://jgrapht.org.

[39] James mime4j homepage.
http://james.apache.org/mime4j.

[40] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing? In FSE,
pages 654–665, 2014.

[41] R. Just, F. Schweiggert, and G. M. Kapfhammer.
Major: An efficient and extensible tool for mutation
analysis in a java compiler. In ASE, pages 612–615,
2011.

188

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 17,2022 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

[42] K. Koster and D. Kao. State coverage: a structural
test adequacy criterion for behavior checking. In FSE,
pages 541–544, 2007.

[43] B. P. Lamancha, M. Polo, D. Caivano, M. Piattini,
and G. Visaggio. Automated generation of test oracles
using a model-driven approach. IST, 55(2):301–319,
2013.

[44] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H.
Cormen. Introduction to algorithms. MIT press, 2001.

[45] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen. How
effectively does metamorphic testing alleviate the
oracle problem. TSE, 40(1):4–22, 2014.

[46] P. Loyola, M. Staats, I.-Y. Ko, and G. Rothermel.
Dodona: Automated oracle data set selection. In
ISSTA, pages 193–203, 2014.

[47] P. McMinn. Search-based failure discovery using
testability transformations to generate pseudo-oracles.
In GECOO, pages 1689–1696, 2009.

[48] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and
G. Rothermel. A static approach to prioritizing junit
test cases. TSE, 38(6):1258–1275, 2012.

[49] C. D. Nguyen, A. Marchetto, and P. Tonella.
Automated oracles: An empirical study on cost and
effectiveness. In FSE, pages 136–146, 2013.

[50] F. Nielson, H. R. Nielson, and C. Hankin. Principles of
Program Analysis. Kluwer Academic Publishers, 1999.

[51] C. Pacheco and M. D. Ernst. Automatic generation
and classification of test inputs. In ECOOP, pages
504–527, 2005.

[52] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In ICSE,
pages 75–84, 2007.

[53] H. D. Pande, W. A. Landi, and B. G. Ryder.
Interprocedural def-use associations for C systems
with single level pointers. TSE, 20(5):385–403, 1994.

[54] D. Peters and D. L. Parnas. Generating a test oracle
from program documentation. In ISSTA, pages 58–65,
1994.

[55] D. J. Richardson. TAOS: Testing with analysis and
oracle support. In ISSTA, pages 138–153, 1994.

[56] B. Robinson, M. D. Ernst, J. H. Perkins,
V. Augustine, and N. Li. Scaling up automated test
generation: Automatically generating maintainable
regression unit tests for programs. In ASE, pages
23–32, 2011.

[57] R. Rugina, M. Orlovich, and X. Zheng. Crystal: A
program analysis system for C. URL:
http://www.cs.cornell.edu/projects/crystal, 2006.

[58] P. J. Schroeder, P. Faherty, and B. Korel. Generating
expected results for automated black-box testing. In
ASE, pages 139–148, 2002.

[59] D. Schuler and A. Zeller. Assessing oracle quality with
checked coverage. In ICST, pages 90–99, 2011.

[60] D. Schuler and A. Zeller. Checked coverage: an
indicator for oracle quality. STVR, 23(7):531–551,
2013.

[61] S. R. Shahamiri, W. M. N. W. Kadir, S. Ibrahim, and
S. Z. M. Hashim. An automated framework for
software test oracle. IST, 53(7):774–788, 2011.

[62] M. Staats, G. Gay, and M. P. E. Heimdahl.
Automated oracle creation support, or: How I learned
to stop worring about fault propagation and love
mutation testing. In ICSE, pages 870–880, 2012.

[63] M. Staats, M. W. Whalen, and M. P. E. Heimdahl.
Programs, tests, and oracles: The foundations of
testing revisited. In ICSE, pages 391–400, 2011.

[64] Time and Money homepage.
http://sourceforge.net/projects/timeandmoney.

[65] W.-T. Tsai, P. Zhong, J. Balasooriya, Y. Chen,
X. Bai, and J. Elston. An approach for service
composition and testing for cloud computing. In
ISADS, pages 631–636, 2011.

[66] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. ASEJ,
10(2):203–232, 2003.

[67] J. M. Voas and K. W. Miller. Putting assertions in
their place. In ISSRE, pages 152–157, 1994.

[68] WALA: T. J. Watson Libraries for Analysis.
http://wala.sourceforge.net/.

[69] R. Wilcox. Kolmogorov–smirnov test. Encyclopedia of
biostatistics, 2005.

[70] Q. Xie and A. M. Memon. Designing and comparing
automated test oracles for GUI-based software
applications. TOSEM, 16(1):4, 2007.

[71] T. Xie, L. Zhang, X. Xiao, Y.-F. Xiong, and D. Hao.
Cooperative software testing and analysis: Advances
and challenges. JCST, 29(4):713–723, 2014.

[72] Y. Xiong, D. Hao, L. Zhang, T. Zhu, M. Zhu, and
T. Lan. Inner oracles: Input-specific assertions on
internal states. In FSE, pages 902–905, 2015.

[73] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie,
L. Zhang, and H. Mei. Search-based inference of
polynomial metamorphic relations. In ASE, pages
701–712, 2014.

[74] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang,
S. Cheng, and L. Zhang. Predictive mutation testing.
In ISSTA, page To appear, 2016.

[75] J. Zhang, M. Zhu, D. Hao, and L. Zhang. An
empirical study on the scalability of selective mutation
testing. In ISSRE, pages 277–287, 2014.

[76] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid.
Regression mutation testing. In ISSTA, pages
331–341, 2012.

[77] L. Zhang, G. Yang, N. Rungta, S. Person, and
S. Khurshid. Feedback-driven dynamic invariant
discovery. In ISSTA, pages 362–372, 2014.

[78] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined
static and dynamic automated test generation. In
ISSTA, pages 353–363, 2011.

[79] W. Zheng, H. Ma, M. R. Lyu, T. Xie, and I. King.
Mining test oracles of web search engines. In ASE,
pages 408–411, 2011.

189

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 17,2022 at 10:04:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

